

Comprendre le monde, construire l'avenir®

A new method to improve the electron momentum reconstruction in PANDA

Binsong MA Institut de Physique Nucléaire, ORSAY On behalf of PANDA Collaboration FAIRNESS, Berlin, Sept 2013

Outline

- Introduction
 - > Physics motivations for nucleon structure studies with PANDA
 - PANDA detectors and the tracking system
- Electron momentum reconstruction
 - The problem with Bremsstrahlung
 - A new method to correct its effect
 - Results and applications
 - ✓ Form factors study ($\bar{p}p \rightarrow e^+e^-$)
 - ✓ Transition Distribution Amplitudes ($\bar{p}p \rightarrow J/\Psi \pi^0$)
- Conclusions

Nucleon form factors

- The nucleon electromagnetic internal structure is characterized by two form-factors :G_E(q²) (electric), G_M(q²) (magnetic)
- q² is the four-momentum squared transferred at the γ*hadron vertex = squared mass of the virtual photon q²=M_ν²

Form factors are real

Form factors are complex for $q^2 > 4m_{\pi}^2$

 $\tau =$

4 *M*

Time-Like Form Factor measurement with PANDA

Cross-sections: $\bar{p}p \rightarrow e^+e^-$

$$\sigma_{tot} \sim \left| G_{eff} \right|^2 = \frac{2\tau \left| G_M \right|^2 + \left| G_E \right|^2}{2\tau + 1}$$

angular distributions: $\bar{p}p \rightarrow e^+e^-$

$$\frac{d\sigma}{d(\cos\theta_{CM})} \sim \left[\tau \left(G_{M}^{TL}\right)^{2} (1 + \cos^{2}\theta_{CM}) + \left(G_{E}^{TL}\right)^{2} \sin^{2}\theta_{CM}\right]$$

A.Zichichi et al., Nuovo Cimento 24 (1962) 170 Egle Tomasi-Gustafsson et al., EPJA24 (2005) 419

Estimates for an integrated luminosity of 2fb⁻¹

Sudol et al. EPJA 44 (2010) 373

Distribution Amplitude and Transition Distribution Amplitude

A way to probe the proton wave function:

- Hadronic matrix elements of 3 quark operators on the light cone
 - Distribution Amplitude (DA) :

π

$$\left\langle 0 \left| \varepsilon^{ijk} u_{\alpha}^{i} (z_{1}n) u_{\beta}^{j} (z_{2}n) d_{\gamma}^{k} (z_{3}n) \right| p \right\rangle$$

- Transition Distribution Amplitude (TDA): $\pi N \text{ case: } \left\langle \pi^{0} \middle| \varepsilon^{ijk} u_{\alpha}^{i} (z_{1}n) u_{\beta}^{j} (z_{2}n) d_{\gamma}^{k} (z_{3}n) \middle| p, s_{p} \right\rangle$ Quantifies the pion cloud in nucleon

π

Access to TDA in different reactions

Factorized description:

Challenge of nucleon structure studies in p̄p reactions

- Exclusive electromagnetic channels
 - > $\bar{p}p$ → e^+e^- > $\bar{p}p$ → $e^+e^-\pi^0$ > $\bar{p}p$ → J/Ψ π^0 ,
- Huge hadronic background (e.g. $\sigma(\overline{p}p \rightarrow \pi^+\pi^-)/\sigma(\overline{p}p \rightarrow e^+e^-) \sim 10^6$)
- Need excellent detector performance
 Particle Identification

Momentum resolution (kinematical constraints)

PANDA experiment

Antiproton ANnihilation at DArmstadt

Tracking system and algorithm

TDR for the PANDA STT, arXiv:1205.5441

INSTITUT DE PHYSIQUE NUCI ÉAIRE

ORSAY

Problem of e⁺/e⁻ reconstruction with Kalman Fit

- Track follower of Kalman Filter(KF): GEANE
- GEANE calculates the mean electron energy loss and the rms, but Bremsstrahlung is highly non-gaussian!

So, KF can not handle the problem correctly

Electron momentum resolution after Kalman Fit

e^{-} momentum reconstruction with γ emission

-p_{rec}:Reconstructed momentum by tracking

My proposal: use the γ energy from EMC

Justification:

- Reconstructed momentum
 p_{rec} ≈p_{out} (momentum of the electron before the DIRC)
- If a γ is emitted before the DIRC: $p_{out} \approx p_{MC} - E_{\gamma}$ (γ is emitted in the same direction as e^{-})

In practice:

- Handle the problem event by event
- •Search for the associated Bremsstrahlung γs in the EMC.(ΣE_{γ})

•Calculate:
$$p_{corr} = p_{rec} + \Sigma E_{\gamma(i)}$$

Electron Bremsstrahlung correction method

• Case one: the showers of e^{-} and γ can be well distinguished.

correction with only separated e-/y bumps

correction with both separated and

merged e/γ bumps

Preliminary result of Bremsstrahlung correction method for single e⁻ tracks

Increase of number of electrons inside two sigma:
 60% → 79% for Barrel (about 85% for ideal case) and
 46% → 65% for FW (about 80% for ideal case).

· · · ·

16

Application for nucleon form factors studies in $\bar{p}p \rightarrow e^+e^-$ (no radiation include)

Improvement of number of events inside the cut : $51\% \rightarrow 87\%$

Application for TDAs studies in $\bar{p}p \rightarrow J/\Psi \pi^0 \rightarrow e^+ e^- \pi^0$

Improvement of number of events inside $2\sigma: 38.4\% \rightarrow 61.0\%$

Conclusions

- Studies of the nucleon structure with PANDA. (FFs, TDAs,) need an optimized electron momentum reconstruction.
- A new method based on the Bremsstrahlung photon detection is proposed.
- Promising results are obtained:
 - ✓ Improvement of electron momentum resolution.
 - ✓ Increase of signal selection efficiency for electromagnetic channels
- Influence on radiative corrections needs to be studied.

THANK YOU!

PANDA/IPN Orsay Group:

A. Dbeyssi, M.Gumberidze, T. Hennino, R. Kunne, D. Marchand, S. Ong, B. Ramstein, E. Tomasi-Gustafsson, J. Van de Wiele