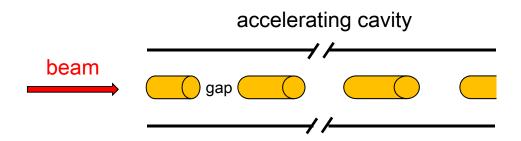
High Intensity Effects in Linacs


L. Groening, GSI, Germany

<u>Outline</u>

- Beam Loading
- Space Charge Field, Tune Shift
- Emittance Growth, Matching
- Resonances & Instabilities
- Particle-Particle close Encounters
- Coherent Radiation

Beam Loading

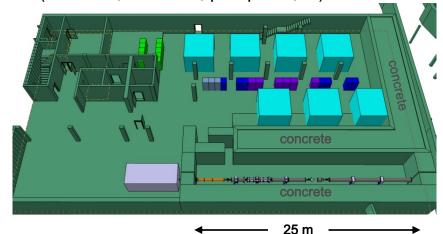
- to provide design accelerating field inside cavity, a fixed amount of rf-power P_{cav} is required
- *P_{cav}* depends on cavity geometry, material, and field oscillation mode
- P_{cav} dissipated by finite resistance of the cavity material
- power transferred to beam called beam load

$$P_b := \Delta E_u \cdot A \cdot \dot{N} = \frac{\Delta E_u \cdot A \cdot I}{qe}$$

- beam load can considerable exceed P_{cav}
- beam load should be provided fastly, i.e. while beam fills cavity

$$\tau_{fill} \sim n_{gaps} \cdot \tau_{rf} = \frac{n_{gaps}}{f_{rf}}$$

Beam Loading Examples


	GSI Alvarez Cavity I	FAIR Proton Linac CH-Cavity II
Ion	⁴⁰ Ar ¹⁰⁺	Protons
Energy Gain per Nucleon	2.21 MeV/u	12.5 MeV
Beam Current	10 mA	70 mA
Beam Loading	88 kW	870 kW
P _b /P _{cav}	0.18	1
n _{gaps}	62	27
T _{rf}	9.2 ns	3.1 ns
T _{fill} /T _{rf}	62	13.5

- rf-power sources are major cost contribution for linacs
- linac project cost are sensitive to beam loading
- generally rf-controls work slower, ≈ 1500 ns ≈ 300 T_{fill}
- bunches within this time are accelerated less → lost or appropriatly cut away

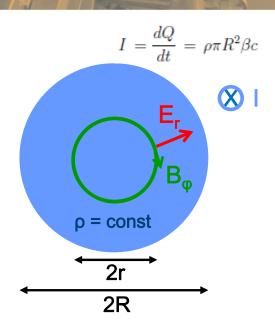
More Beam → More Losses → More Cost

- more ions in the machine lead to higher losses
- lost ions hit the equipment and might cause damage
- machine needs protection, i.e. increasing demands on:
 - diagnostics
 - controls
 - euipment close to beam (cooling, radiation hard, etc ...)
- lost ions cause radiation: gammas, neutrons,
- persons must be protected from that, i.e.
 - machine inside tunnel from shielding material (concrete, stainless, paraphine, ...)
 - access rules & surveillance for tunnel

main loss driver is electromagnetic particle-particle interaction

Space Charge Force within Coasting Beam

from Maxwell eqs, Gauss & Stokes:


$$E_r(r) = E(r) = \frac{I}{2\pi\epsilon_o R^2 \beta c} r$$
 repulsive

$$B_{arphi}(r) = B(r) = rac{\mu_o I}{2\pi R^2} r$$
 attractive

$$r'' = \frac{1}{\beta^2 c^2} \ddot{\vec{r}} = \frac{eq}{Am_o \gamma \beta^2 c^2} \left[\vec{E} - \vec{v} \times \vec{B} \right]$$

$$r'' = \frac{eqI}{2\pi\epsilon_o Am_o(\beta\gamma c)^3 R^2} r =: \frac{P}{R^2} r$$

Perveance
$$P := \frac{eqI}{2\pi\epsilon_o Am(\beta\gamma c)^3}$$

- net force is defocusing
- force decreases with energy: β→1: r" = 0
- ρ = const: force is linear, acts like defocusing quadrupole

Space Charge Tune Shift

space charge adds to Hill's Equ.

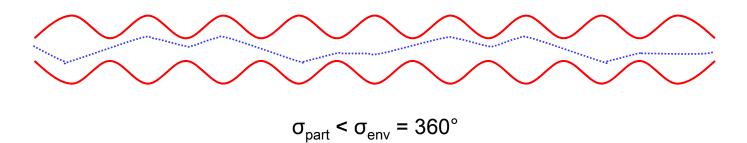
$$x'' + \left[\kappa_o(s) - \frac{P}{R^2}\right]x := x'' + \kappa(s)x = 0$$

phase advance σ of oscillating x, called "tune"

$$\sigma = \sqrt{\kappa}$$

tune shift from space charge

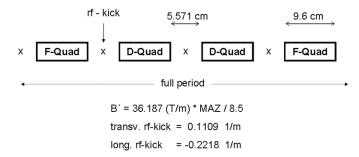
$$\sigma^2 = \sigma_o^2 - \frac{P}{R^2} =: \sigma_o^2 - \Delta \sigma^2$$


inhomogeneous beam

$$\rho = \rho(r) \longrightarrow \sigma(r) \longrightarrow \Delta\sigma(r) \longrightarrow \kappa(r)$$

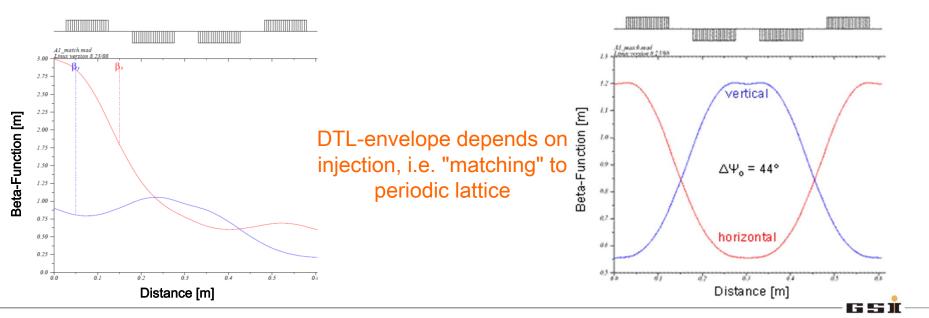
- non-constant focusing κ → rms-emittance not preserved, but it growths !!!
- larger emittance → larger beam size → more losses
- space charge emittance growth can be minimized by "envelope-matching"

Matched Envelope

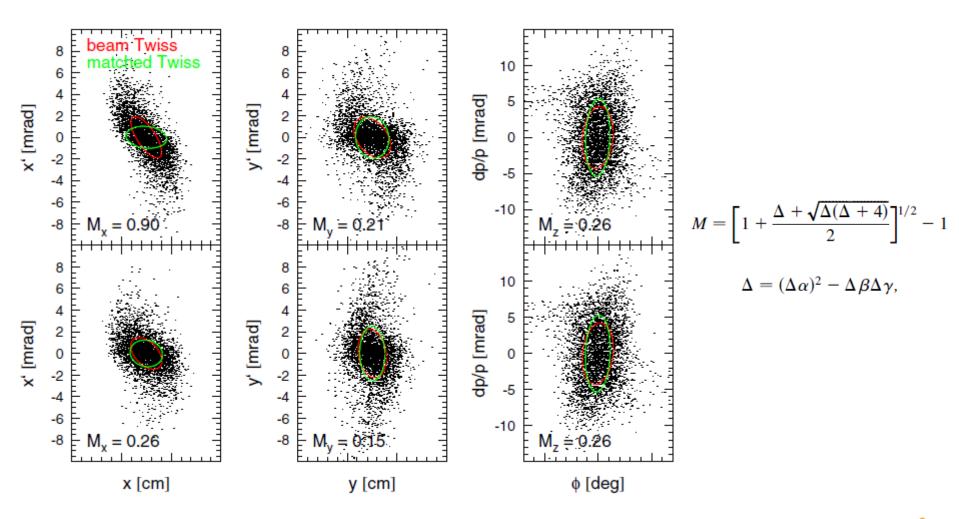


- "matched" beam: periodicity of envelope reflects periodicity of the lattice
- matched beam is in equilibrium with its environment
- sum of total energy of beam particles is minimized (free energy is zero)

Matched Envelope (GSI Linac)

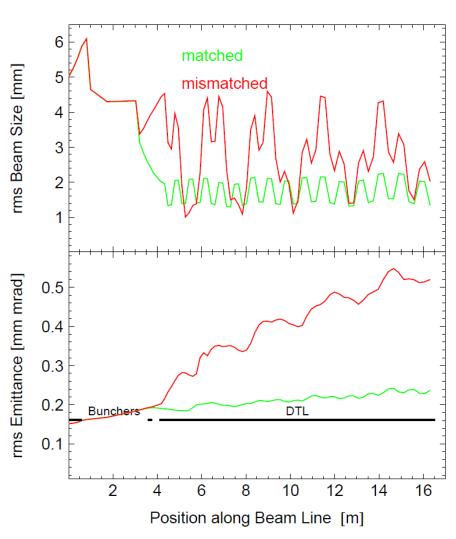


Alvarez DTL has periodic lattice


generally, envelope has an asymmetric, non-periodic shape

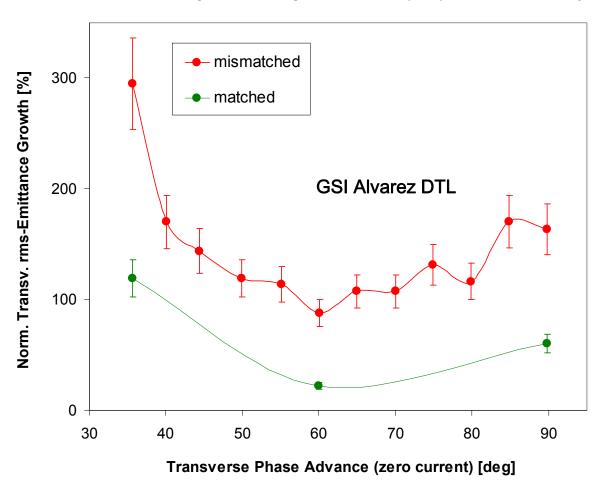
lattice has one symmetric, periodic solution of envelope (matched)

Mismatch Definition



Matched Envelope - Minimized Emittance Growth

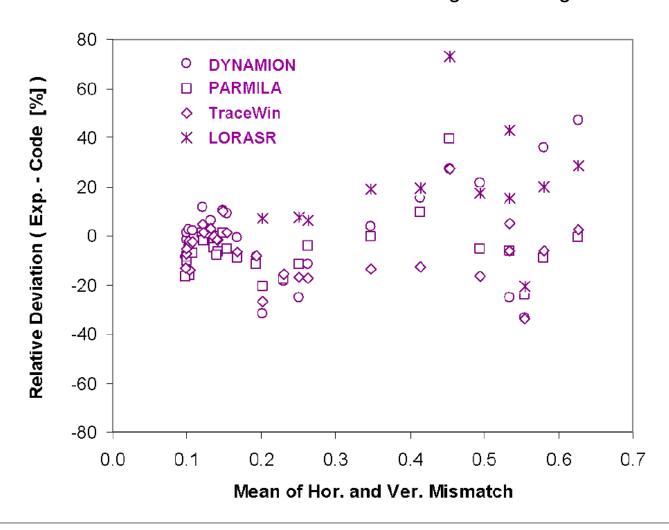
Simulation


Mismatched Beams:

- might give also 100% transmission
- might deliver "nice" beam profiles
- increase emittance strongly
- manifest as beam losses later
- cannot be detected directly

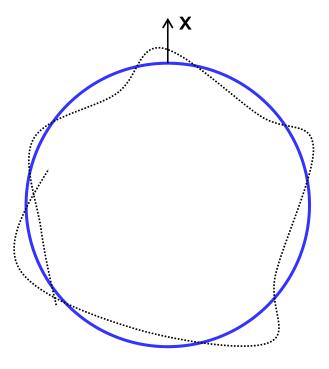
Experimental Investigation of Matching

Measured emittance growth along the DTL for (mis)matched envelopes



Beam matching successfully demonstrated, PRST-AB 11, 094201 (2008)

Matched Envelope → **Higher Simulation Reliability**

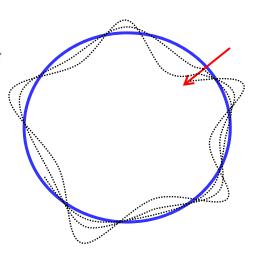

Comparison of measured & simulated rms-emittance growth along a drift tube linac

Resonances (in Circular Machines)

- Circular machines have intrinsically periodic focusing lattices
- Single particles do quasi-periodic oscillations around design orbit
- No perturbations: $x'' + \sigma^2 x = 0$
- σ is given by lattice, i.e. drifts, dipoles, and quadrupoles

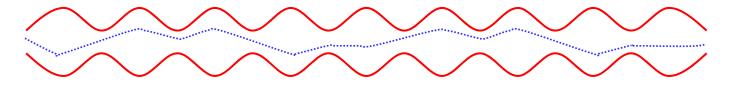
Resonances (in Circular Accelerators)

- Perturbation generally from errors in single devices (magnets)
- Each particle passes many times the perturbing device

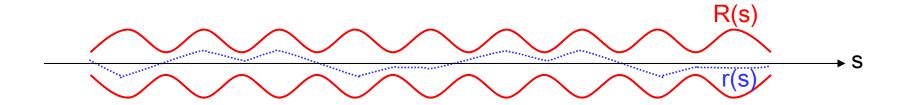

- Perturbation kicks single particle
- Same perturbation is applied periodically to each particle: $x'' + \sigma^2 x = a \cdot x^n \cdot e^{i\sigma_p s}$
 - n=0, pert $\sim x^0$, dipolar
 - n=1, pert $\sim x^1$, quadropolar
 - n=2, pert ~ x², sextupolar
 - n=3, pert ~ x³, octupolar
 - ...

Resonances (in Circular Accelerators)

- Perturbations drive resonances and cause beam loss if σ is chosen badly
- Suppose perturbation is weak \rightarrow solution oscillates with un-perturbed σ : $x=e^{-i\sigma s}$
- Plug into perturbed oscillator equ.: $x'' + \sigma^2 x = a \cdot e^{-in\sigma s} \cdot e^{i\sigma_p s} = a \cdot e^{i(-n\sigma + \sigma_p)s}$
- Effective frequency of perturbation = $-n\sigma + \sigma_p$
- Resonance: pertubation at unperturbed frequency, i.e. $-n\sigma + \sigma_p = \sigma$


resonance at
$$\sigma = \frac{\sigma_p}{n+1}$$

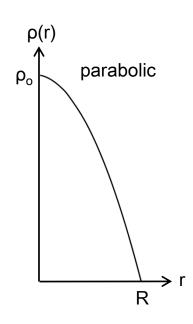
Resonances in a Linear Accelerator


- Each device is seen by particle just once
- Single devices cannot cause resonant perturbation
- Q-diagrams are not used in linac design
- High beam current :
 - space charge (sc) of beam acts on each single particle
 - sc force acts always on particle
 - sc force depends on beam dimensions
 - periodic change of beam dimensions (envelope) → periodic sc force on particle

$$\sigma_{\rm part} < \sigma_{\rm env} = 360^{\circ}$$

Model for Resonance

- assumption of a periodically breathing beam envelope with phase advance σ_{env}
- envelope has radial symmetry
- bunch is homogeneously charged along s, length = $(\beta \lambda)/6 = 60^{\circ}$
- single particle experiences :
 - constant external focusing with σ_o from magnets
 - electric field of breathing envelope


Model for Resonance

beam charge density depends on radius r:

$$\rho(r) \ = \rho_o(s) \cdot \left[1 \ - \ \frac{r^2}{R(s)^2} \ + \ O(r) \right] \quad {\rm r}^{\, {\rm 24}} \ {\rm neglected}$$

breathing with σ_{env}

creating a field:

$$E_r \, = \, \frac{6 \cdot I}{\pi \epsilon_o \cdot R(s)^2 \beta c} \left[r \, - \, \frac{r^3}{2R(s)^2} \right] \, , \quad r \leq R(s) \qquad \qquad \underline{\text{octupolar field component (r^3)}}$$

Single Particle Motion

single particle motion driven by two components ($\beta << 1$, self-magn. field neglected):

$$r'' = -\sigma_o^2 r + \frac{e \cdot q}{A \cdot m_u} \cdot E_r$$

external focusing

space charge field from beam (perturbation)

$$r'' + \left[\sigma_o^2 - \underbrace{\frac{eq}{Am_u} \cdot \frac{6 \cdot I}{\pi \epsilon_o \cdot R(s)^2 (\beta c)^3 \gamma}}\right] r = -\frac{eq}{Am_u} \cdot \underbrace{\frac{3 \cdot I}{\pi \epsilon_o R(s)^4 (\beta c)^3 \gamma} \cdot r^3}_{}$$

tune depression from repulsive space charge

quasi-oscillates with envelope frequency

$$r'' + \left[\sigma_o^2 - \Delta\sigma^2\right] r = a \cdot r^3 \cdot e^{i\sigma_{env}s}$$

$$r'' + \sigma^2 y = a \cdot r^3 \cdot e^{i\sigma_{env}s}$$
 depressed phase advance

Single Particle Motion

$$r'' + \sigma^2 y = a \cdot r^3 \cdot e^{i\sigma_{env}s}$$

depressed phase advance

Ansatz : $r = e^{-i\sigma s}$

"New" oscillator equation:

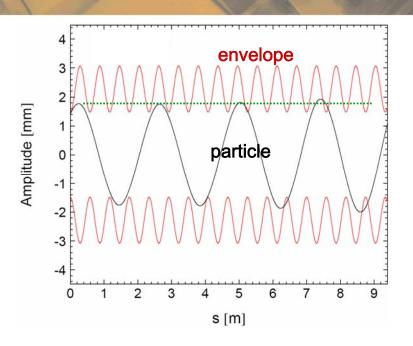
$$r'' + \sigma^2 r = a \cdot e^{i(\sigma_{env} - 3\sigma)s}$$

frequency of effective perturbation

Resonance condition:

$$\sigma_{env} - 3\sigma = \sigma$$

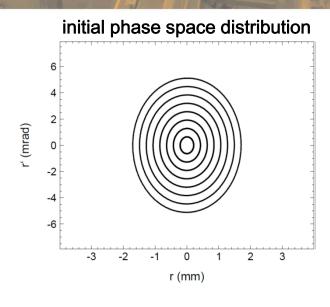
resonance condition : $\sigma_{env} = 4\sigma$

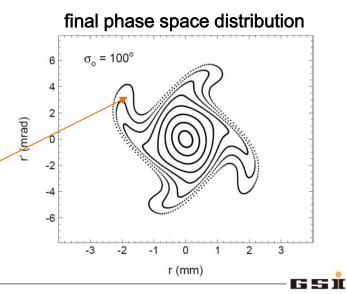

envelope oscillates 4 times faster than single particle

$$\sigma_{\rm env} = 360^{\circ} \rightarrow \sigma = 90^{\circ}$$

4th order resonance occurs at σ = 90°, i.e. $\sigma_o \ge 90^\circ$

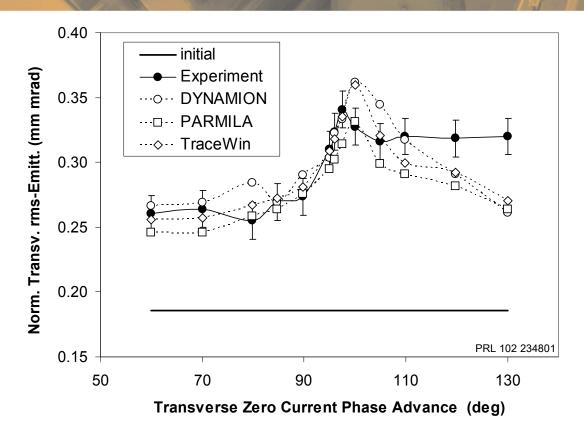
Numerical Integration of Diff. Equation



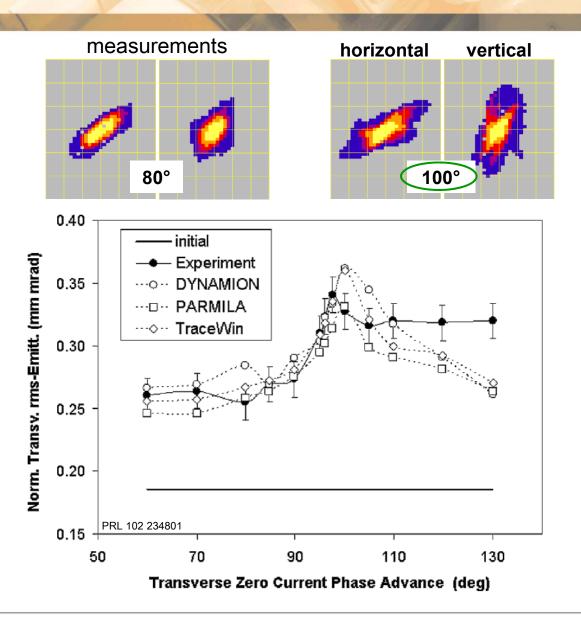


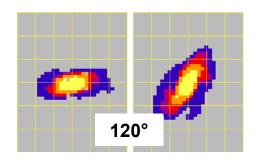
 $\sigma_{oscillation}$ (envelope) = 4 * $\sigma_{oscillation}$ (particle)

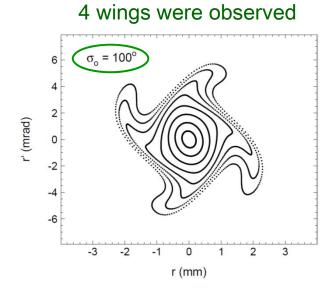
→ resonant excitation of single particles


4 wings: characteristic feature of 4th order resonance

Measurements: DTL Exit rms Emittance vs. σ_o






- strong growth approaching $\sigma_o \approx 100^\circ$
- tune depression: $\sigma_o \approx 100^\circ \rightarrow \sigma \approx 90^\circ = 360^\circ / 4$
- good agreement with three simulation codes
- strong hint for space charge driven 4th order resonance

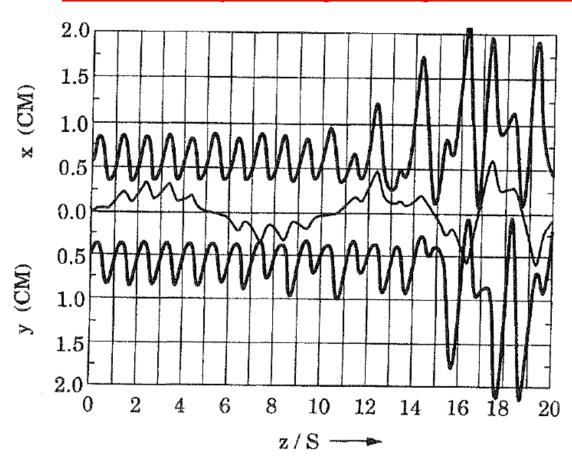
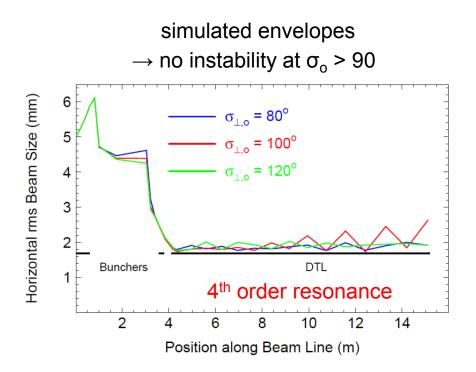
Proof for 4th Order Resonance in the UNILAC

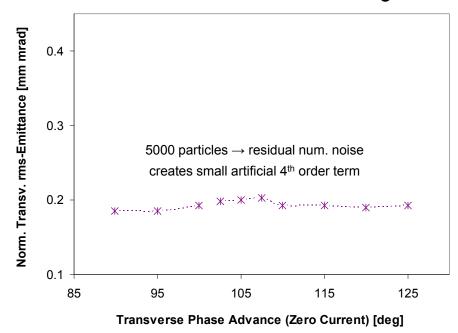
4th Order Space Charge Resonance in a Linac

- predicted by D. Jeon (SNS/ORNL) → PRST-AB **12**, 054204 (2009)
- measured first time in GSI UNILAC
- justifies golden design rule of avoiding $\sigma_0 > 90^\circ$ in the design of linac lattices
- rule originally to avoid so-called "envelope instability", which
 - assumes a homogeneously charged beam: δ = const
 - states that mismatch results in exp. envelope growth at $\sigma_o \ge 90^\circ$
 - but :
 - beams with δ = const (to my knowledge) have never been seen
 - this instability is much weaker than resonant emittance growth

Envelope Instability?

M. Reiser, Theory and Design of Charged Particle Beams


Figure 4.17. Quadrupole channel, slightly mismatched beam ($\sigma_0=120^\circ$, $\sigma=35^\circ$). (From Reference 12.) J. Struckmeier and M. Reiser, Part. Accel. 14, 227 (1984)

Envelope Instability?

simulated rms emit. growth δ =const beam, no 4th order term \rightarrow no growth

DTL too short and/or mismatch too small for envelope instability growth

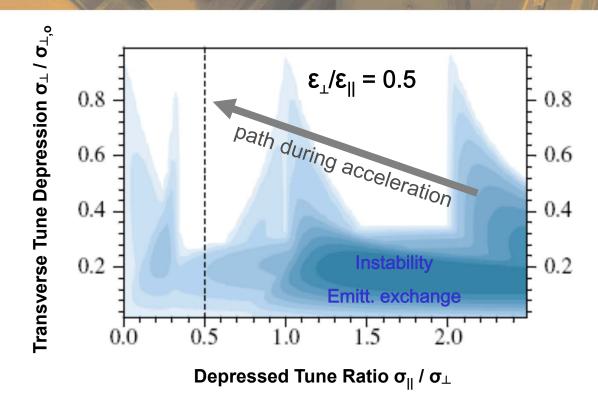
Parametric Resonances from Inter-Plane Coupling

- previous resonances were purely transverse → occur also in coasting (dc) beams
- linacs use bunched beams → space charge forces couple long. & transv. planes
- coupling might trigger energy transfer from "cold" plane to "hot" plane
- beam temperature $T_{\perp} \sim < r' >^2 \sim \frac{\epsilon_{\perp}}{<\beta_{\perp}>}$
- phase advance $\sigma_{\perp}=rac{1}{L}\int_{0}^{L}rac{ds}{eta_{\perp}}$ $\sigma_{\perp}\simrac{1}{<eta_{\perp}>}$ ightarrow $T_{\perp}\sim\epsilon_{\perp}\cdot\sigma_{\perp}$
- heat (emittance) transfer, if $T_{\perp} \neq T_{||}$
- modern high current linacs: $\sigma_{||} \approx \sigma_{\perp}, \ \epsilon_{||} > \epsilon_{\perp} \longrightarrow T_{||} > T_{\perp}$

Emittance transfer from longitudinal to transverse plane is expected

Parametric Resonances from Inter-Plane Coupling

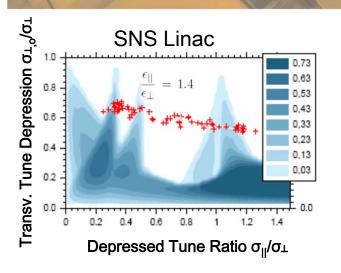
- early 80's: I. Hofmann investigated (theoretically) beams with homogeneous charge density
- homogeneous beams have linear sc forces only → no emittance-growth or -exchange
- introduction of density perturbation → how does perturbation evolve?

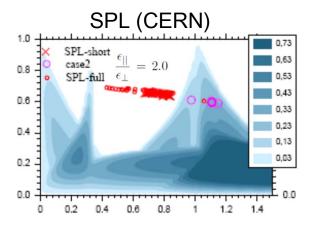

- exponential increase, i.e. emittance transfer?
 - . .
- re-distribution to homogeneous density, i.e. no transfer ?

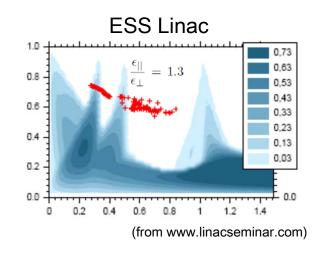
- result:
 - transfer occurs just in vicinity of $\frac{\sigma_{||}}{\sigma_{\perp}}=\frac{m}{n_{||}}$ except $\frac{\epsilon_{\perp}}{\epsilon_{||}}=\frac{m}{n}$, i.e. $T_{||}=T_{\perp}$
 - away from these regions no emittance transfer even at $T_{\perp} \neq T_{||}$
 - m=n is strongest resonance

detailed description in PRE 57, 4713 (1998)

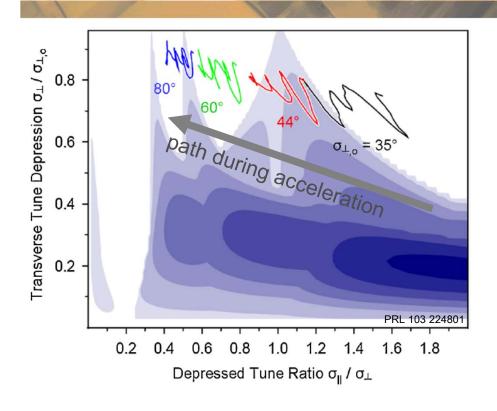
Hofmann's Stability Charts

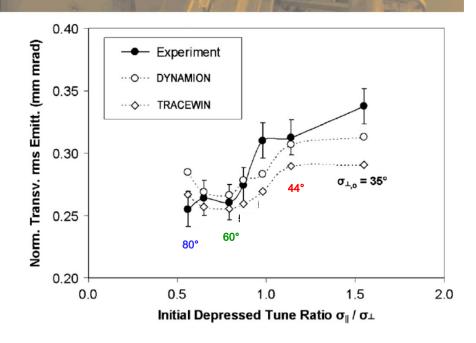





- charts plot regions where emittance transfer is expected
- charts depend just on long./transv. emittance ratio
- transfer at $T_{\parallel} = T_{\perp}$ strongly suppressed

Parametric Resonances from Inter-Plane Coupling





- Hofmann charts: well excepted linac design tool
- simulations: just $\sigma_{\parallel} \approx \sigma_{\perp}$ harmful to machine performance
- no experimental verification
- experiment done at GSI UNILAC, first DTL tank

Experimental Evidence for Parametric Resonance at the UNILAC

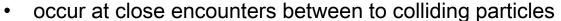
- tune ratio approaches 1.0 → increased transv. growth measured
- result in good agreement with simulations

Effect of Space Charge on Emittance Growth: Summary

Ordered according to amount of growth (strong to low):

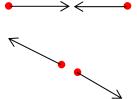
- Envelope mismatch
- Transverse Resonance
- Parametric Resonance
- Envelope instability

Close Particle-Particle Encounters



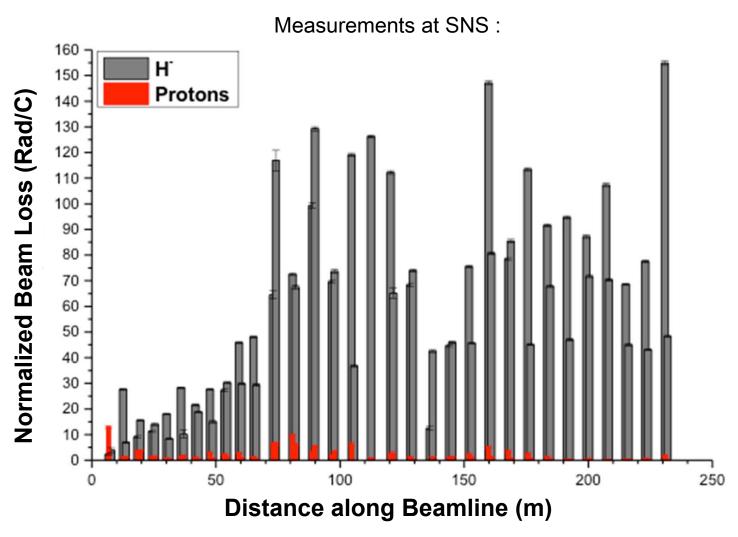
- space charge (simulation) smears out other particles to a continuum

space charge omits granular nature of beam

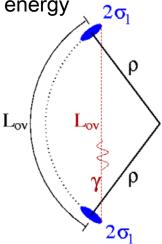


- its forces do not have "spikes"
- but spikes exist and:

may kick them out of machine acceptance → losses


- ring machines: repeated collision between ions lead to emittance growth, called "intrabeam" scattering. Not considered so far in linac design/operation
- linac: collisions between ions may change charge state of ions called "intra-beam stripping (IBS)" → ions lost
- IBS causes losses in the recently commissioned Spallation Neutron Source (SNS) linac

Intra-Beam Stripping within H- Beam

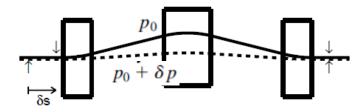


presented by J. Galambos (ORNL) at Linac2012 at Tel Aviv, Israel, and PRL 108, 114 801, (2012)

Coherent Synchrotron Radiation (CSR)

- relativistic particles in a bending dipole radiate (synchrotron radiation)
- $P_{rad} \sim q^2$, $P_{rad,inc} \sim Nq^2$, N = particles per bunch
- dense & short bunch:
 - radiation from tail hits head
 - radiation interacts with bunch → induces additional radiation
 - radiation gets coherent
 - bunch radiates like single particle with charge (Nq)
 - $P_{rad,coh} \sim (Nq)^2$
 - might reach MW level and lowers beam energy
 - reduces beam quality

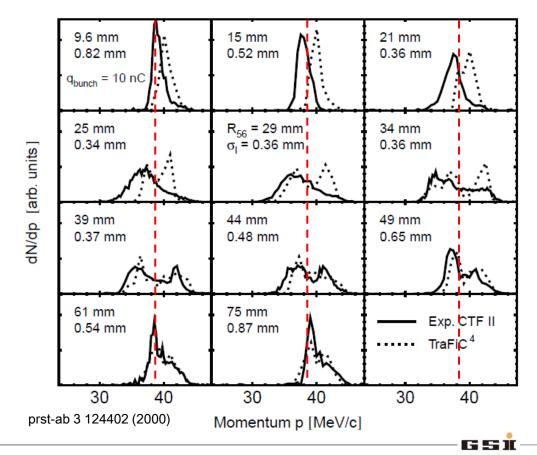
Overtaking Condition:


$$L_{ov} = \sqrt[3]{48 \sigma_l \rho^2}$$

$$\Delta P_{\text{coh}} = 0.028 \text{ N}^2 \frac{\text{c e}^2}{\epsilon_0 \rho^{2/3} \sigma_l^{4/3}}$$

CSR: Effect on Beam Energy Spectrum

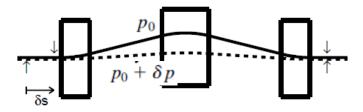
magnetic bunch compressor:

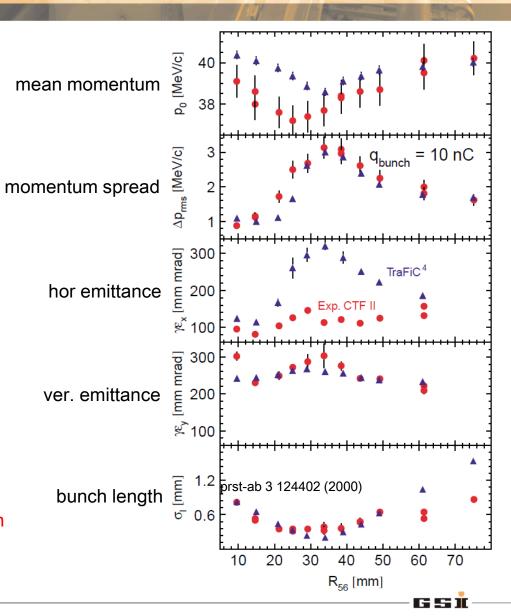


- compresses & bends bunches
- $R_{56} := \frac{\delta s}{\delta p}$
- given by bending angle

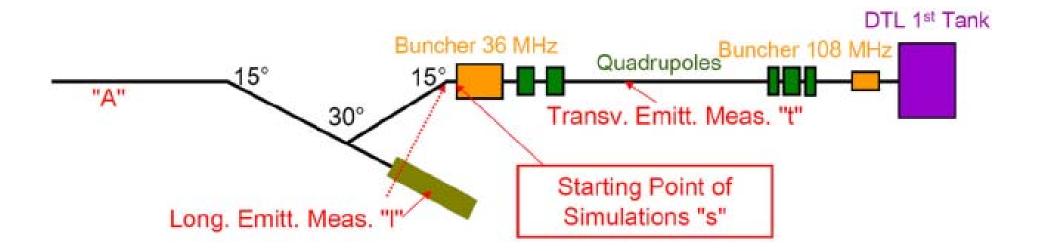
CSR effect on momentum spectrum:

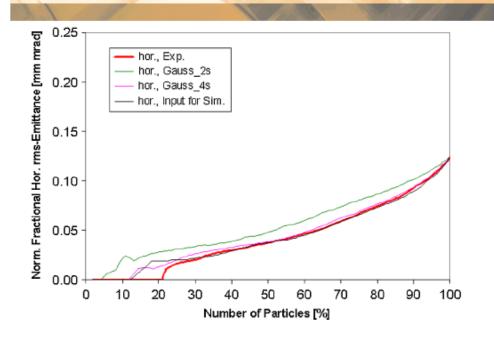
- momentum spread increase
- · shift to lower momenta

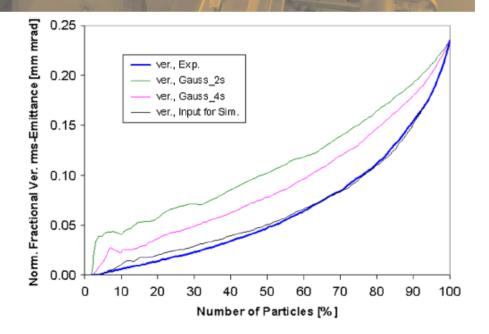

momentum spectrum vs. bending angle (bunch length)


CSR: Effect on Beam Quality

magnetic bunch compressor:


- compresses & bends bunches
- $R_{56} := \frac{\delta s}{\delta p}$
- given by bending angle
- opposite to space charge, coherent radiation increases with energy
- causes beam energy loss
- can cause considerable beam quality degradation
- one limiting factor in X-FEL performance


Reconstruction of initial Twiss Parameters



Emittance Growth depends on Distribution

$$\tilde{R}^2 = X^2 + X^2 + Y^{1.2} + Y^{1.2} + \Phi^2 + (\delta P/P)^2$$

and

$$f(\tilde{R}) = \frac{a}{2.5 \times 10^{-4} + \tilde{R}^{10}}, \qquad \tilde{R} \le 1$$

$$f(\tilde{R}) = 0, \qquad \tilde{R} > 1,$$