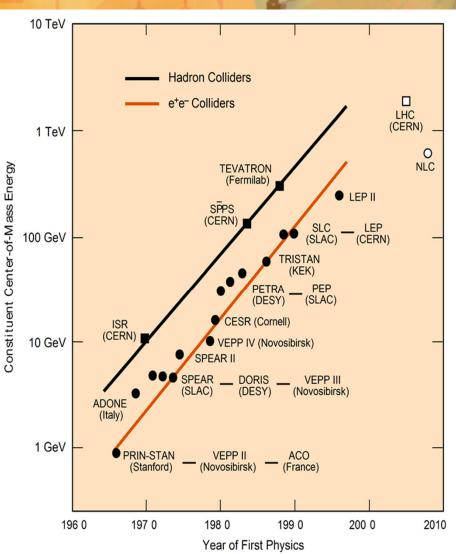
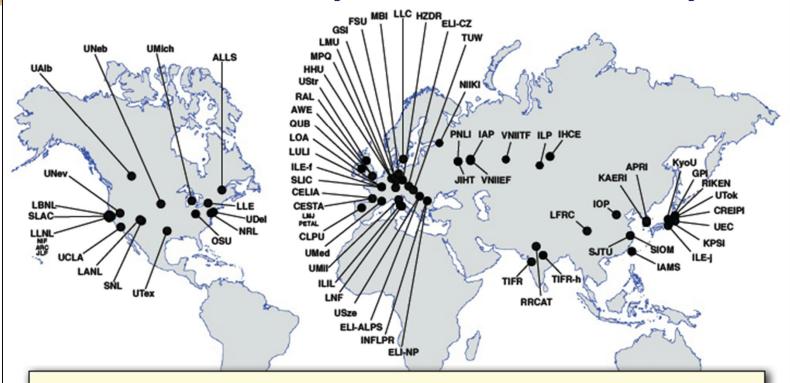
Laser acceleration ond applications

I. Hofmann, GSI - HIJena 517th Heraeus-Seminar 18 October 2012

- 2. Applications for electrons
- 3. Laser protons acceleration
- 4. Therapy application
- 5. Actual developments
- 6. Conclusions



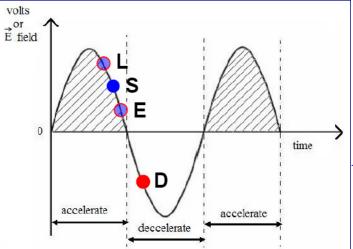
Where are accelerators today?



~26.000 accelerators worldwide

- ~ 44% are for radiotherapy,
- ~ 41% for ion implantation,
- ~ 9% for industrial processing and research,
- ~ 4% for biomedical and other lowenergy research,
- ~ 1% with energies > 1 GeV for science and research

2010 ICUIL World Map of Ultrahigh Intensity Laser Capabilities IZEST constituency resides in UHIL community



- the total peak power of all the CPA systems operating today is ~11.5 PW
- by the end of 2015 planned CPA projects will bring the total to ~127 PWs
- these CPA projects represent ~\$4.3B of effort by ~1600 people (no NIF or LMJ)
- these estimates do not include Exawatt scale projects currently being planned

PJ Burly (back/LREst_goal)

Laser acceleration – the idea

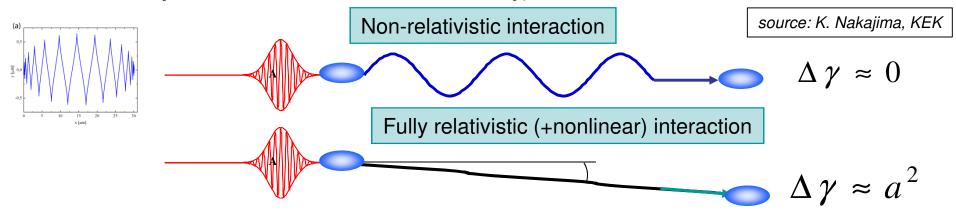
- In conventional RF cavities fields
 < 100 MeV/m for 10 GHz RF
- Much higher fields not tolerable
- But lasers in vacuum or in plasmas (no breakdown!)
- → plasma waves for acceleration
 - 1979: Tajima and Dawson predicted GeV/cm in plasmas of 10¹⁸ cm⁻³ using lasers of >10¹⁸ W/cm²

Amplitude of the transverse electric field of linearly polarized laser:

$$E_L[TV/m] = \frac{m_e c^2 k}{e} a_0 \cong 3.21 \frac{a_0}{\lambda [\mu m]} \cong 2.7 \times 10^{-9} I^{1/2} [W/cm^2]$$

 \rightarrow I =1×10¹⁸ W/cm² gives E_L =2.7 TV/m

source: K. Nakajima, KEK

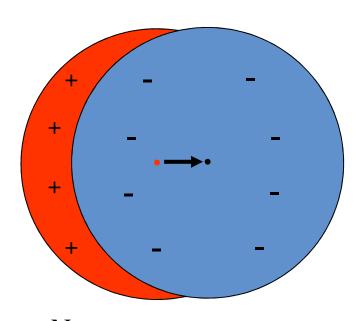

Lawson-Woodward Theorem

(J.D. Lawson, IEEE Trans. Nucl. Sci. NS-26, 4217, 1979)

The net energy gain of a relativistic electron interacting with an electromagnetic field in vacuum is zero.

The theorem assumes that

- (i) the laser field is in vacuum with no walls or boundaries present,
- (ii) the electron is highly relativistic ($v \approx c$) along the acceleration path,
- (iii) no static electric or magnetic fields are present,
- (iv) the region of interaction is infinite,
- (v) ponderomotive effects (nonlinear forces, e.g. v x B force) are neglected (electrons pushed towards lower laser density).



Acceleration mechanism must violate the Lawson-Woodward theorem - number of possibilities exist herefore (ponderomotive force, plasma background etc.)

Plasmas as carriers of electric fields

plasma frequency of oscillation of e sphere against p sphere

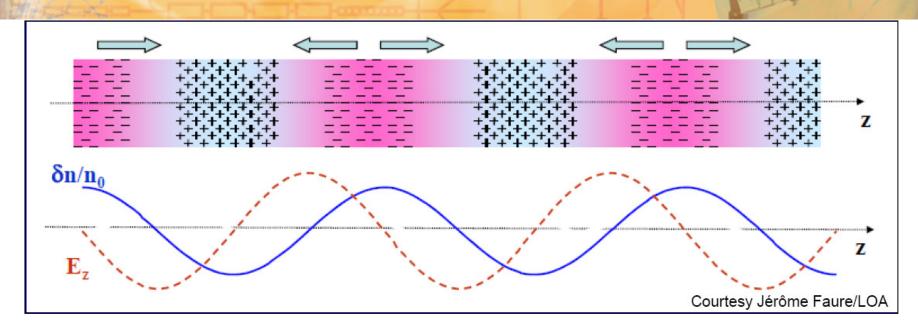
Rule of thumb:

 $n_e = 10^{10}$ cm⁻³ → $V_p = 1$ GHz → conventional accelerator beam:

for $n_e < 10^8$ cm⁻³ $\rightarrow v_p < 100$ MHz plasma frequency "negligible" or weak perturbation in high intensity

$$\frac{1}{3}$$
 = 1D

$$E_{x} = \frac{eN}{4\pi\varepsilon_{0}R^{3}}x$$


$$\frac{d^{2}}{\sqrt{x}} = \frac{e^{2}N}{\sqrt{x}}$$

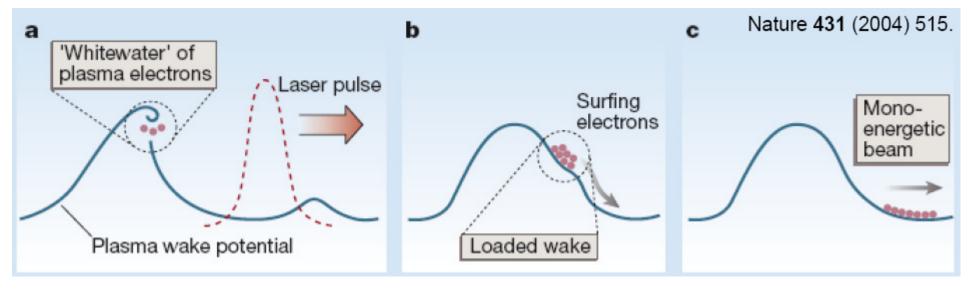
$$\overline{x} = \frac{e^{2}N}{\sqrt{x}}$$

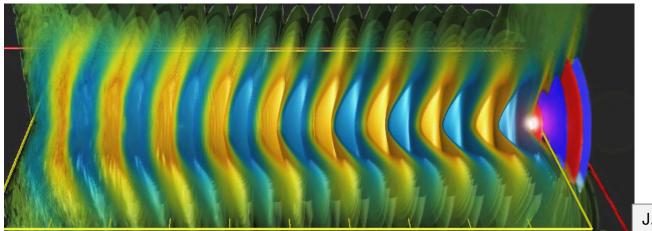
$$\overline{x} = \frac{e^{2}N}{\sqrt{x}}$$

Plasma oscillations can sustain tremendous E-fields

$$n_e = 10^{10} \text{ cm}^{-3} \rightarrow V_p = 1 \text{ GHz}$$

- $\lambda_p = 30 \mu m$


$$\omega_p^2 = \frac{e^2 n_e}{\varepsilon_0 m_e}$$

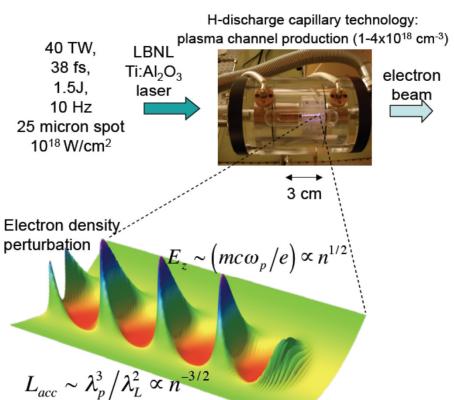

E-field of wake:

$$E_0 = cm_e \omega_p / e$$

Electrons surfing on a plasma wave

J.-L. Vay, LBNL

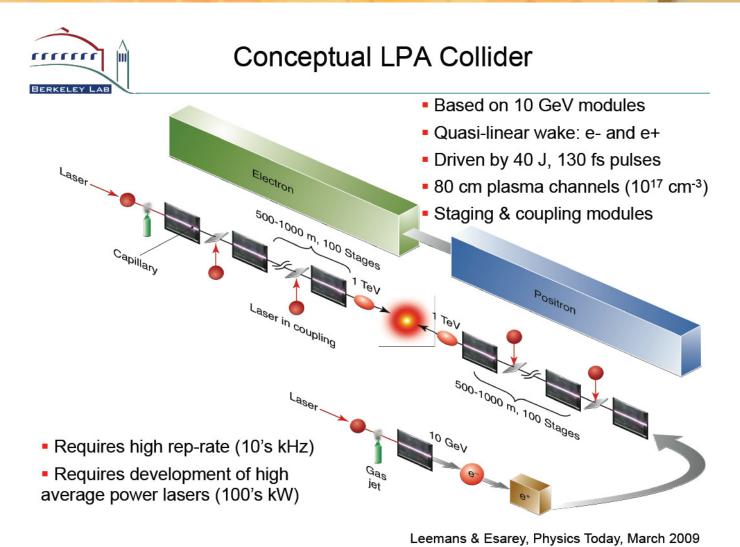
Application of Laser Electron Acceleration


- Do the much higher gradients in laser acceleration (103..104 times) lead to much reduced size and cost of laser accelerators?
- Is the efficiency wall → photons and photons → electrons competitive?
- Is the beam quality competitive with conventional RF accelerators?
- all are open questions

Proof-of-principle, LBNL Berkeley

Experimental demonstration: 1 GeV high-quality beam via laser-plasma accelerator

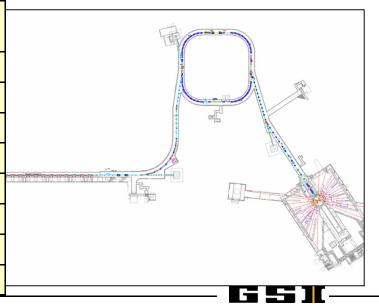
Beam energy =1.0 GeV Charge= Q~30 pC 1.6 mrad rms divergence 2.5% rms energy spread


Leemans et al., Nature Phys. (2006). Nakamura et al., Phys. Plasmas (2007).

Plasma channel allows extended laser-plasma interaction length

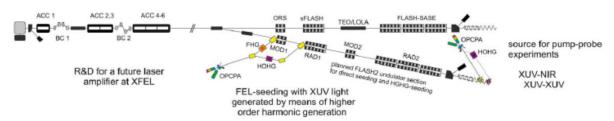
 Δ W[GeV] ~ $eE \cdot L_{acc} \sim I[W/cm^2]/n[cm^{-3}] \propto n^{-1}$

The "dream accelerator" of laser physicists: Linear TeV e+ e- collider


"Closer to reality": Laser Stripping of H⁻ Particles in Conventional High-Intensity Proton Accelerators

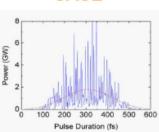
When the beam power is increased from the 1 MW to more than 3 MW as envisioned in the SNS Power Upgrade project, the stripping foils become radioactive and produces uncontrolled beam loss

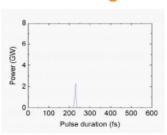
H- ions are


- 1. converted to H⁰ by stripping off the first electron in a magnetic field
- 2. then H⁰ atoms are excited from the ground state (n = 1) to the upper levels (n \geq 3) by a laser,
- 3. and the excited states H^{0*} are converted to H⁺ by stripping the second electron in a second magnetic field.

Method	Macropulse laser	Macropulse laser w/ 20x resonator
Laser wavelength (nm)	355	355
Micropulse length (ps)	50	50
Micropulse energy (μJ)	50	2.5
Micropulse repetition rate (MHz)	402.5	402.5
Macropulse length (ms)	1	1
Macropulse energy (J)	20	1
Macropulse repetition rate (Hz)	60	60
Average power (W)	1200	60

Even more "down-to-the-earth" application: FEL's: seeding by laser vs. spontaneous undulator radiation


Seeding – the future for pump-probe experiments


Seeding:

- fully temporal coherent
- well defined Gaussian spectrum
- intrinsically synchronized to seeding laser
- enables high resolution pump-probe experiments
- Requirements:
 - few nJ in single VUV / XUV harmonic
 - Tunable harmonics

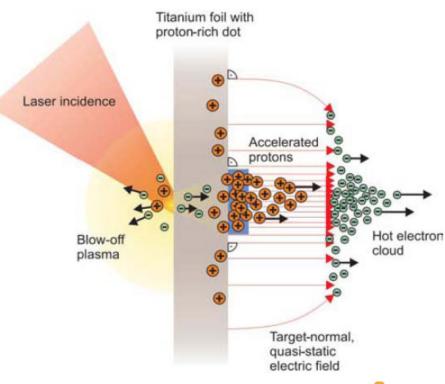
SASE

Seeding

Siegfried Schreiber | ICFA/ICUIL Meeting GSI | 8-10 Apr 2010

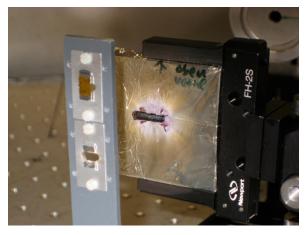
Protons and ions are too slow to catch the wave - only indirect acceleration via electrons

Laser Driven Acceleration of Protons

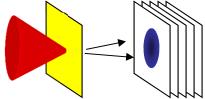

- Direct acceleration in laser field > 10²⁵
 W/cm² far beyond current lasers
- Plasma wakefield phase velocity too fast for protons & ions
- → only indirect ways

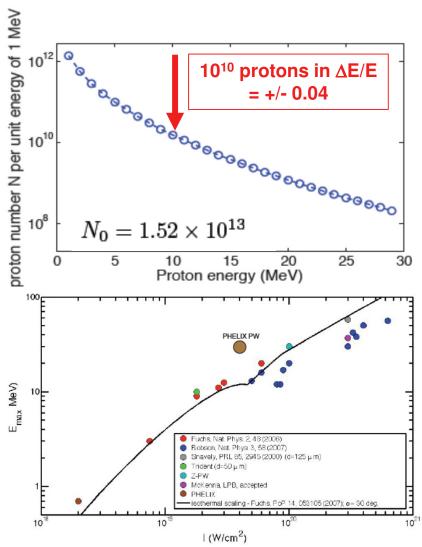
Target Normal Sheath Acceleration

"best understood" candidate:

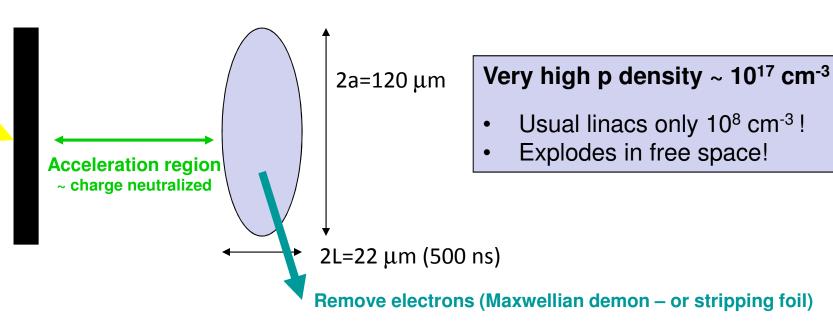

- laser creates blow-off plasma on front surface
- backside expansion accelerated electrons ionize hydrogen
- hot electrons create electric field (by space charge)
- causes acceleration of protons (electrons slowing down – end of acceleration)
- neutralized bunch of comoving p and e generated

Need typically: 50 J 500 fs \rightarrow 100 TW 30 μ m radius \rightarrow 10¹⁹ W/cm²



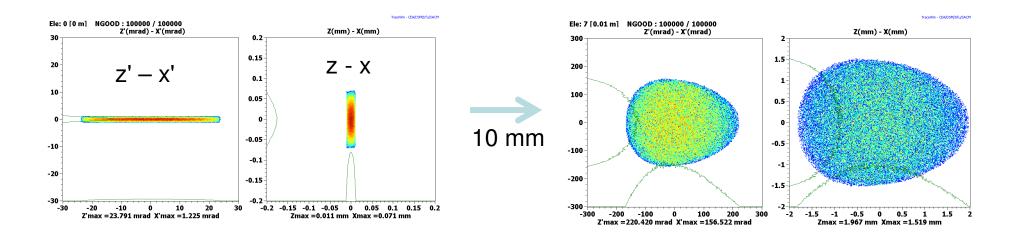


Results of the first PHELIX experiment (2009) on laser proton acceleration: TU Darmstadt – GSI collaboration


Setup to test proton production

Initially record densities of accelerated protons!

Electrons are needed in the beginning: if absent, Coulomb explosion of an unneutralized p bunch


Selffield energy:
$$W = \frac{\mathcal{E}_0}{2} \iiint_V E^2 dx dy dz$$

Energy conservation derived from Vlasov equation by forming moments:

$$\frac{m\gamma\beta^{2}c^{2}}{2}(x'^{2}+y'^{2}+z'^{2})+V_{ex}+\frac{W}{\gamma^{2}N}=const$$

TRACEWIN code simulation of "Coulomb explosion"

TRACEWIN (CEA)
Linac code with fast 3D PIC solver

Strongly oblate ellipsoid

- ~ Spherical bunch
- General behavior of Coulomb explosion?

Stopping of 10 keV electrons (20 MeV p) in 0.5 µm Cu foil has tolerable effect on protons

(FLUKA-simulations S. Sinigardi, 2012)

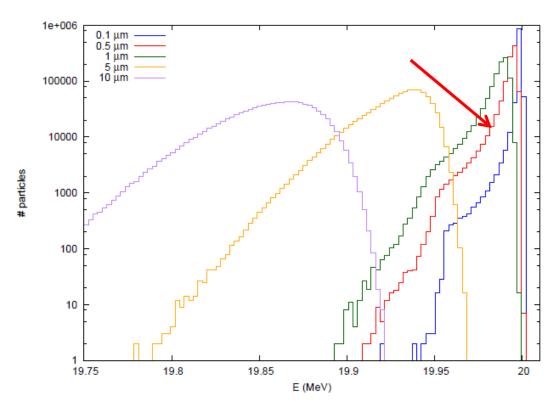
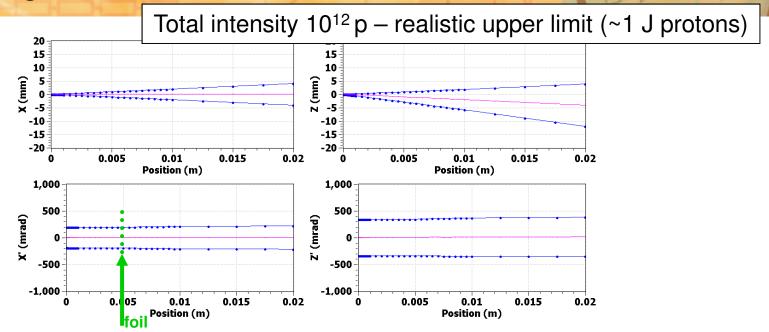
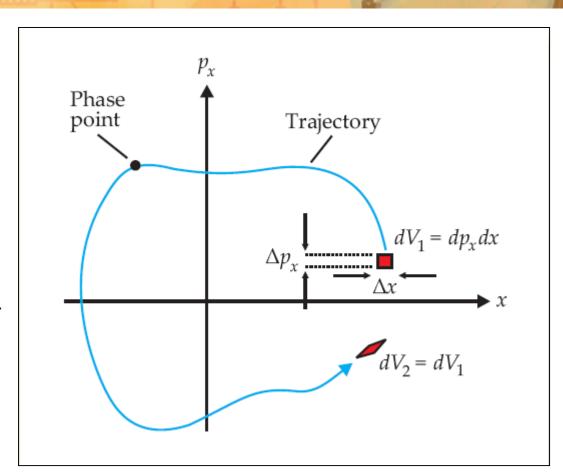



Figure 7: Protons energy spectra after different thicknesses of the copper foil - input protons: 20 MeV

Electrons can be removed by foil after 5 mm propagation

- proton bunch enlarged ballistically
- space charge effect with e absent is "controllable"


- "Small" space charge blow-up after foil at 5 mm
- Need to check space charge in rest of beam line
- Consistent approach to space charge problem

Liouville theorem – phase space

Applies to:

- ✓ 1D: xp_x if $\Phi(x,t)$
 - for red square in 2d phase plane
 - also for global ensemble area in 2d
- ✓ 3D: $xp_x yp_y zp_z$ if $\Phi(x,y,z,t)$
 - for red square in 6d
 - also valid for exact area of global ensemble area in 6d
 - not for projections into xp_x or xp_y
 - effective area always grows in focusing or transport devices for large ΔE/E and divergences
 - cannot maintain record phase space densities at origin! new ideas?

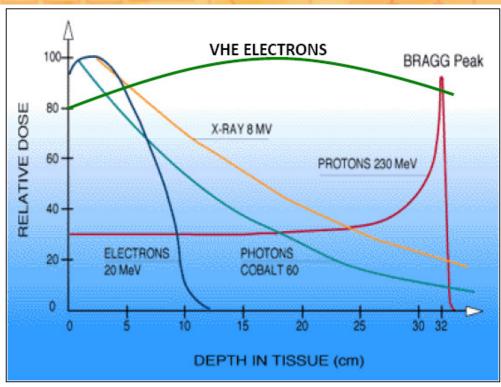
Can we compare Laser Acceleration with conventional high intensity proton accelerators?

MeV p/sec p/ micropulse or spill SNS Oakridge (Spallation Neutron Source): 1000 **10**¹⁶ 6x10⁸/ every 2.5 ns

FAIR p driver linac (\rightarrow antiproton facility): 70 ~3x10¹³ 1.3x10⁹/ every 3 ns

Proton therapy (HIT Heidelberg synchrotron): ~ 250 $\sim 10^{10}$ $\sim 5x10^{10}$ / 10s spill $\sim 5x10^7$ / voxel (100 Hz)

SNS FAIR-p-linac HIT 5 Hz PW laser system (today)


beam power: 1 MW 100 W 0.2 W 150 W (in photons)

Laser p acceleration:

- ~ 1% photon→proton efficiency → ~ 1 W p power
- in terms of intensity (average power) may be competitive in the area of therapy
- radiography? (protons, neutrons?)

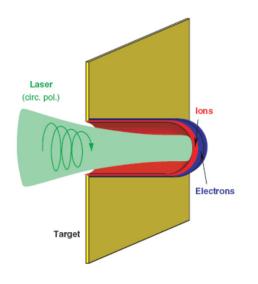
Medical application of laser acceleration

- electrons 150 250 MeV (laser wake field accelerator) for radiotherapy as alternative to 6 MeV photons currently used
- > protons / ions for radiotherapy

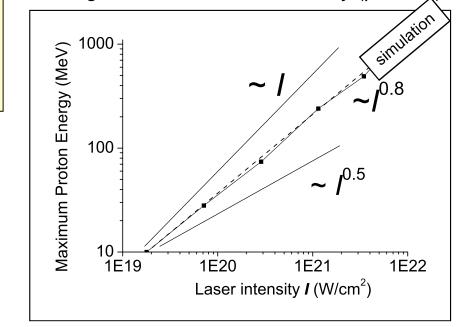
Currently discussed mechanisms for therapy applications

source: ICFA-ICUIL Laser acceleration "white paper" 2011

	Experiments	Status	Theory	Relevance to Therapy
Target Normal Sheath Acceleation	> 1999	>10 ¹³ ions, robust, reproducible <70 MeV	Analytical + 2D/3D simulation s	+
TNSA/BOA (Break-out- afterburner)	> 2011	120 MeV ? (LANL)	2 D / 3D simulation s	++(+)
Radiation Pressure Acceleration	>2008	experimental evidence not conclusive	2 D / 3D simulation s >GeV	++(+)
Coulomb explosion	-	-	2 D simulation	+
Gas Jet - RPA	> 2009	2 MeV observed	2D	++


Radiation Pressure Acceleration of lons*) with ion optical simulation for collection, energy selection etc.

*) X. Yan et al., 2009


Radiation Pressure Acceleration

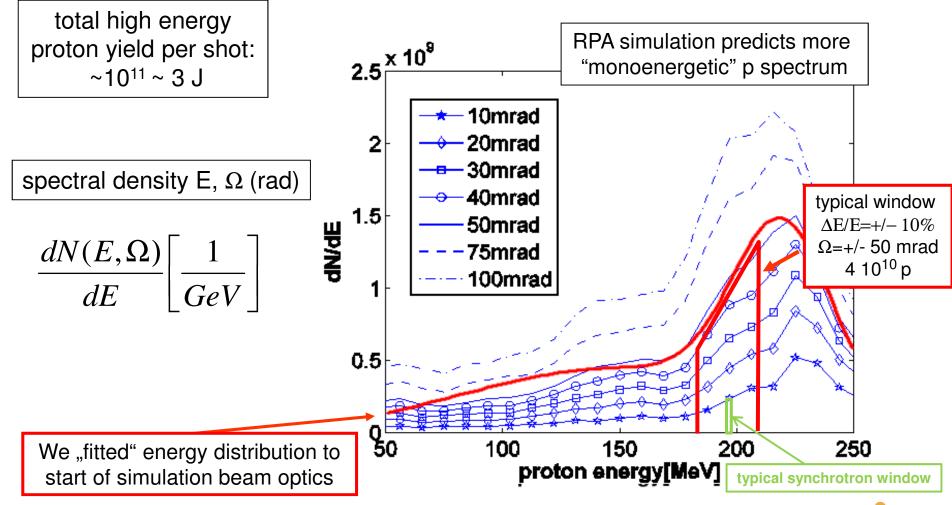
from nm thick C foils

- $> 3 \cdot 10^{21} \text{ W/cm}^2 / 45 \text{ fs} / 10 \,\mu\text{m} \text{ spot radius}$
- results from 2D numerical simulation assuming circular polarized light

Scaling of MeV with laser intensity (protons)

Radiation pressure:

$$P = (1 + R - T)\frac{I}{c} = (2R + A)\frac{I}{c}$$
$$I = \langle |\mathbf{S}| \rangle = \left\langle \frac{c}{4\pi} |\mathbf{E} \times \mathbf{B}| \right\rangle$$

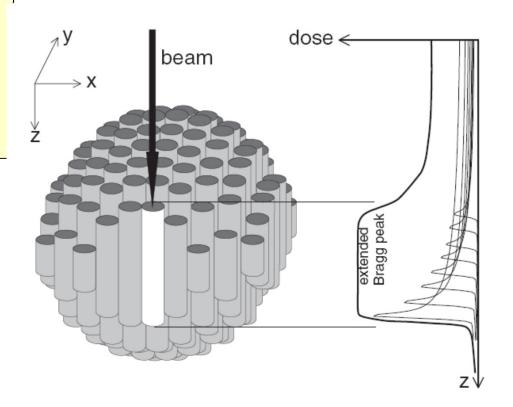


Spectral proton yield

from RPA simulation

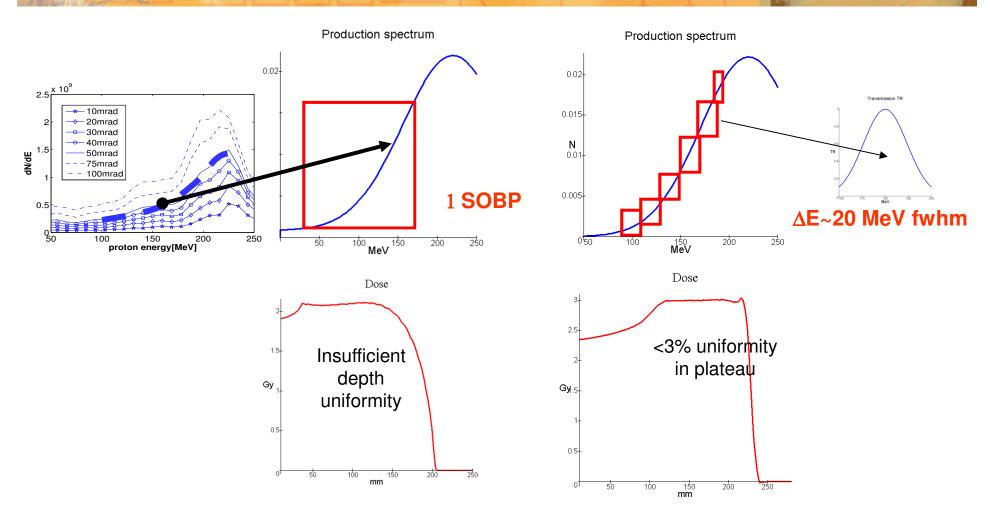
selection of useful "window" for irradiation

I.H., J. Meyer-ter-Vehn, X. Yan, PRST-AB (2011)



How to reach depth dose uniformity?

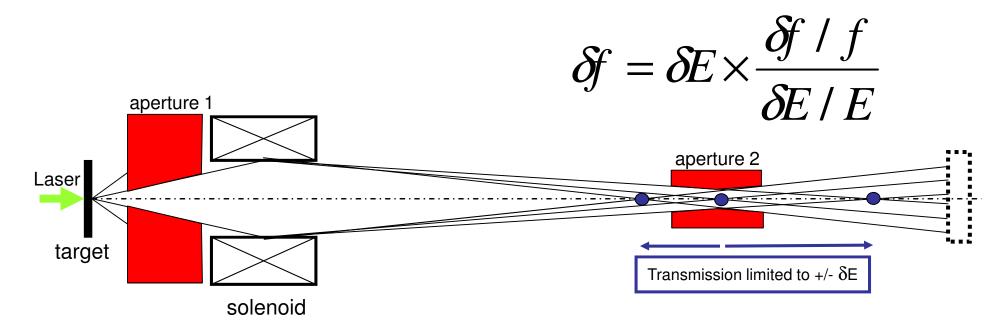
Depth scanning (U. Weber et al, 2000)
with few Bragg peaks seems to match best with laser ions


- U. Weber et al. (2000) proposed ridge absorber to broaden ∆E from synchrotron (10⁻³) for depth scanning
- laser ions: naturally broad energy profile → depth scanning applicable
- → quantify # shots and SOBP's to reach dose uniformity
- Transverse spot scanning

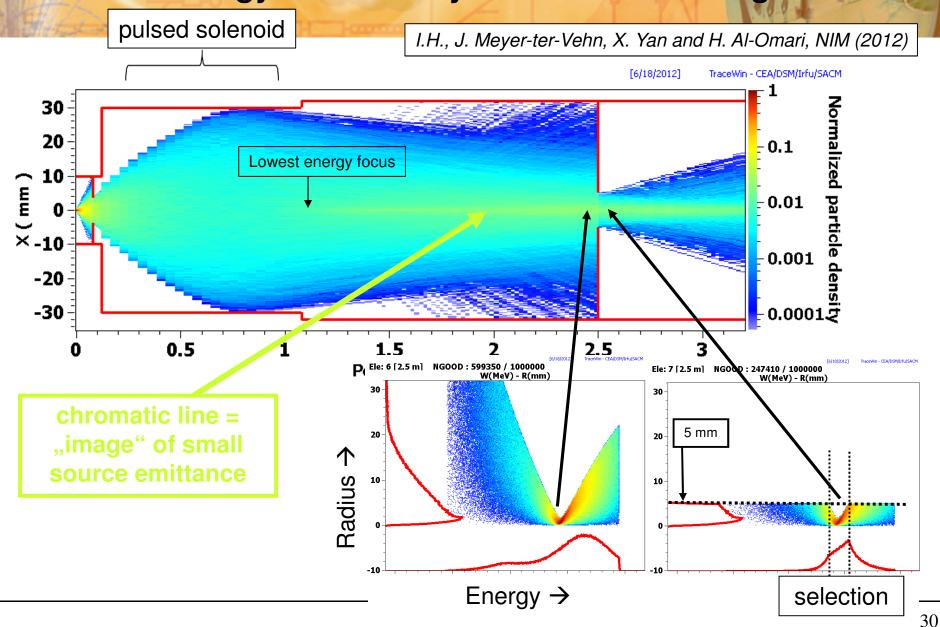
Alternative way: passive formation with large beam and objects

Energy spectrum – depth dose uniformity using 5-6 SOBP's

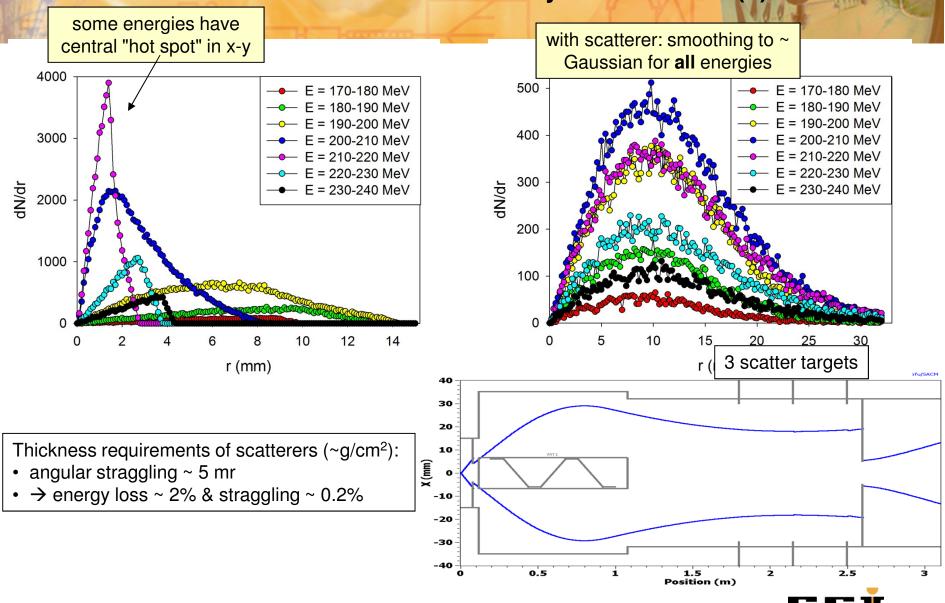
Options for ion optics from laser acceleration can we achieve a reliable reference beam? questioned by Linz & Alonso in 2008, PRST-AB


Relatively large angular and energy spread is an issue - 2 options:

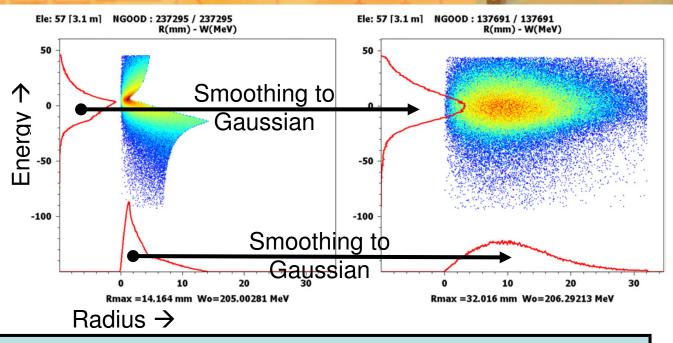
- > no collector angle selection by aperture + dipole energy filter + exit aperture:
 - simple, preferred option in current experiments
 - reduced transmission (~10 mrad "usable")
- collection by solenoid lens:
 - higher transmission (~ 50 mrad "usable" → more efficient use of p)
 - combined **collection and energy filter** due to chromatic focusing effect
- quadrupole triplet may be alternative to solenoid


Solenoid lens collector + chromatic separator

assuming 50 ... 250 MeV proton spectrum



- > aperture 1: angular selection from target
- aperture 2: chromatic energy selection


Ion optical simulation with TRACEWIN*) code (CEA) Energy selection by chromatic focusing

Small source emittance → correlation E-r correlation can be removed by thin scatterer(s)

Scatterer(s) prior to energy selection aperture: define a robust reference beam

- Gaussian energy profile
- Gaussian radial density
- Decorrelates E-Radius
- \rightarrow eliminates "memory" of laser production + lens aberrations (chromatic)
- Well-defined "reference beam" for therapy applications (alleviates scepticism from 2008 Linz&Alonso paper)
- Remaining uncertainty is intensity → shot-to-shot accumulation until nominal dose is achieved (time!)

Parameter estimates for spot scanning or passive formation

ICFA/ICUIL workshop (Berkeley, September 2011) recommendations

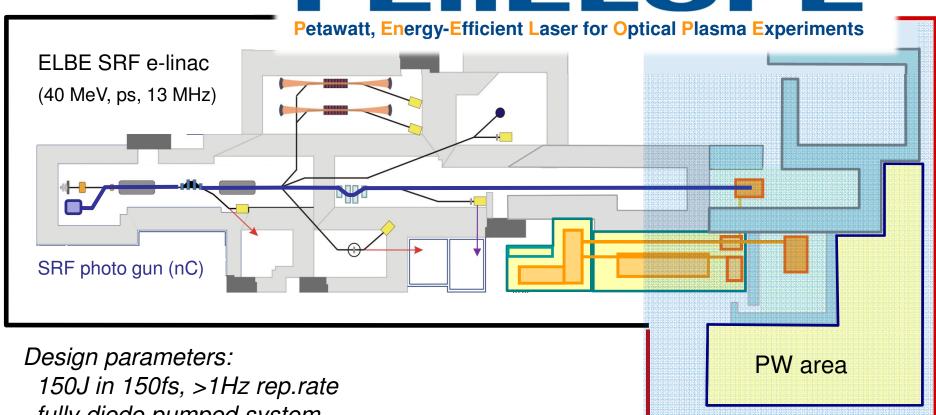
Assume each laser shot gives a "reproducible" transverse and energy profile, but not so well defined intensity → adding up small portions to achieve nominal 2 Gy dose for 1 fraction

	Spot scanning	Passive formation	Comments
Protons / laser shot	2x10 ⁷	2x10 ⁸	reach 2 Gy by accumulation
# transverse	10x10 Spots	10 reps for lateral uniformity	
Energy steps	10	10	ΔE/E=±5%
Reps → dose spec. (~30% intensity jitter)	40	40	10 reps 4 gantry directions
Total # shots per fraction	10000	1000	Factor 1/4 applied
Duration of fraction Laser rep rate	5 min 30 Hz	1.5 min 10 Hz	

Under or near Operating laser facilities worldwide with construction / planning medical context J / fs / Hz type of laser p / ion biophysics experiments therapy relevant J/fs/Hz (date) MeV MeV programs **DRACO** 4.5 J / 30 fs / 10Hz 20 Dose controlled cell irradiation Depth dose **PENELOPE HZDR** and (30J upgrade 1Hz 150 TW and dosimetry planned, **DPSSL** Oncoray 2012/13) Ti:Sapphire development translational research 150J / 150fs (Germany) 1 Hz (~2015) 10 J / 30 fs / 30 min/ 23 KPSI (Japan) J-KAREN 200 doublestrand breaks (2 MeV) Development of source 250 TW Estimation of RBE with dose & beamline, assessment Ti:Sapphire controlled cell irradiation of PET diagnostics 150 TW 4.5 J / 30 fs / 3min **Fox Chase Center** 6 Physics studies Prototype studies Planning on-campus prototype (USA) Ti:Sapphire facility 2 J / 25 fs / 5 Hz MPQ & LMU **ATLAS** 70 TW 600 Single shot radiation biology on Development of source, 60J/20fs/1Hz (~2015) 0.1 J / 5fs / 10 Hz Munich (Germany) & beamline Ti:Sa 50 cell level 5J/5fs/10Hz(~2015) LWS 20TW 0.5J/5fs/1kHz (~2015) **OPCPA** 1 J / 30 fs / 10 Hz **SAPHIR** LOA 14 250 Dosimetric properties Depth dose planned Salle Jaune (2 J upgrade 0.2 Hz (France) 30 TW Cell irradiation SAPHIR 6 J / 30 fs2012/2013) Ti:Sapphire (2012)**QUB Belfast TARANIS** 15 J (2 beams) /500 fs/ 12 Cell irradiation: dose dependent Ion beam lines 15 min (UK) 60 TW. effects on single shot basis planned Nd:Glass GSI PHELIX 150J / 700 fs /10-3 Double strand breaks < 30 Beam line collection & PHELIX upgrade planned Nd glass energy selection (Germany) (at 2 MeV) 5 J/5000 fs 5 **BNL (USA)** CO, Source R&D

New efforts:

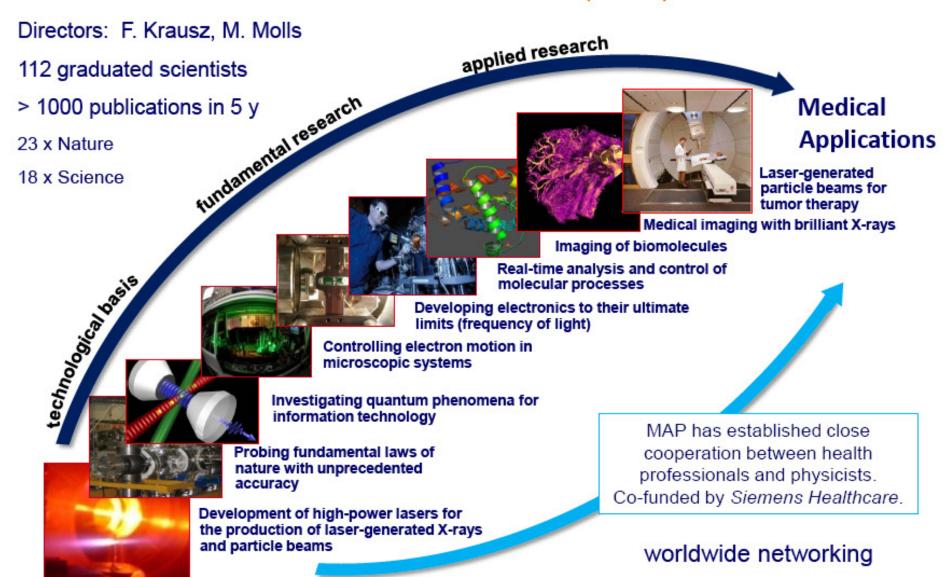
- Bologna-Milano-Frascati 30 MeV laser p into Linac → 60 MeV
- Asia (besides Japan)?


Progressing towards therapy: HZ-Dresden & Oncoray

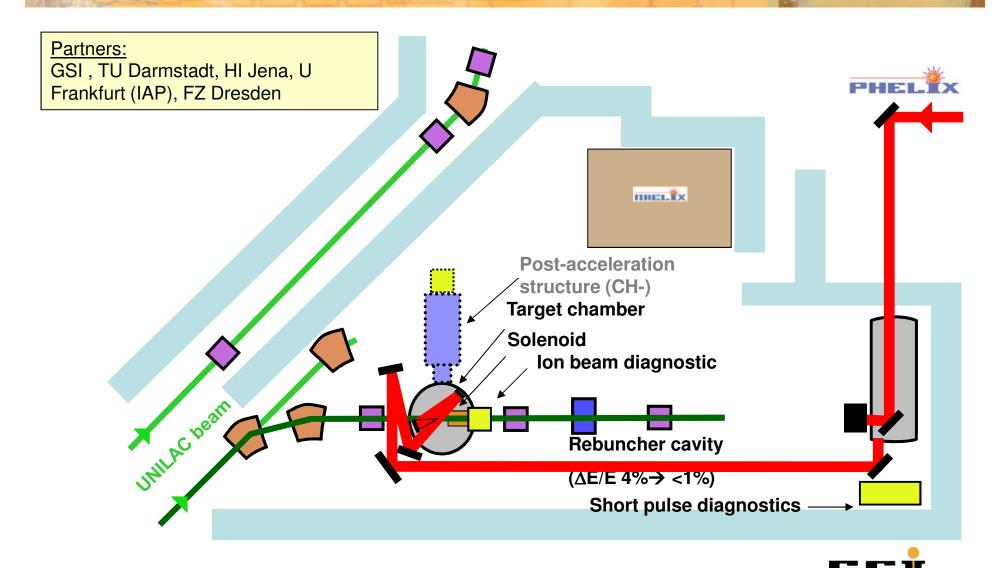
Development of reliable proton sources and online dosimetry for systematic radiobiological studies pulse diagnostics focal diagnostics [MeV]100 energy scaling? Dipole filter parabolic target mirror Transmission max. proton energy $\tau_1[fs]$ ionization target alignment chamber 300 65 integrated **Dosimetry** and cell irradiation 100 1000 system laser power on target P, [TW] Courtesy: U. Schramm, 2011

Next step in HZ-Dresden

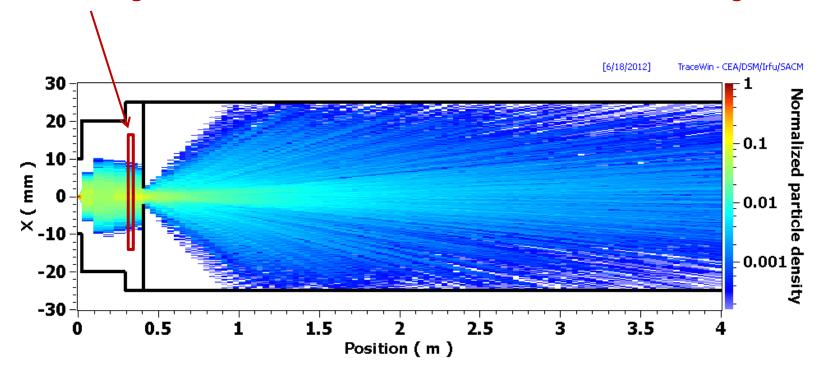
fully diode pumped system,


Complemented by PW class Ti:Saphire laser (30J in 30fs)

Courtesy: U. Schramm, 2011



Munich Centre for Advanced Photonics (MAP), LMU, TUM, MPI



Opportunities @ LIGHT: Test stand at Z6 of GSI + Theoretical work FAIR-Theory group

Test issues of a reference beam at LIGHT

- 1. Test energy selection and relationship $R_A \alpha_{lens}$ (chromatic coefficient) by measuring energy profile (via time profile)
- 2. Electron stopping with sub-μm foil
- 3. "Smoothing" towards Gaussian reference beam with scatter targets

Some conclusions

- ✓ Laser wakefield acceleration of electrons (1 GeV) "robust" scheme with challenging applications
- ✓ Laser proton acceleration now exceeding 100 MeV
- ✓ Good chance for medical application
 - ✓ Well-reproducible beam seems possible
 - ✓ Reliability of facility and cost?
- ✓ Several laboratories committed to advance use of laser acceleration for therapy