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Simple Neutron Star Model

To give an estimate of the density inside a neutron star we want to
use first a simple model.

We assume that

It consists of neutrons only.

The temperature is zero.

The neutrons behave like an ideal Fermi gas.

The star is spherically symmetric.

Force balance inside the star: Fermi pressure ←→ Gravity.
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Force Balance Inside the Neutron Star

We derive the force balance by considering chemical and thermal
equilibrium.

Chemical Potential

µ = εF(r) + Φgr(r) = constant.

Here εF(r) is the Fermi energy and Φgr(r)
the gravitational potential. We use relativis-
tic dispersion for the neutrons with kF(r) the
local Fermi momentum

εF(r) =
√

c2~2k2
F(r) + m2c4 ,

n(r) = 2

∫
d3k

(2π)3
θ(kF(r)− k) =

k3
F(r)

3π2
.
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Differential Equation for the Density

Newtonian Gravitational Potential

Since the neutron star is not homogeneous in the radial direction,
the gravitational potential complicated, but from Gauss’s law we
know the force

−Φ′
gr(r) = −Gm2

r2

∫ r

0
dr ′ 4π(r ′)2 n(r ′) . (1)

Differential Equation

Taking the derivative of the chemical potential εF(r) + Φgr(r) = µ
with respect to the radius gives

d

dr
εF(r) + Φ′

gr(r) = 0 . (2)

Notice that −dεF(r)/dr is thus the force due to the Fermi
pressure.
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Numerical Solution

Density Profile
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We solved the equation with
the boundary conditions

n(0) ≡ nc and n′(0) = 0 .

The total star mass 1.44 M�
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With different nc we notice
that

The maximum mass is
5.7M�.

Above 2.8 M� the radius
is smaller than the
Schwarzschild radius.
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General Relativity

This shows that general relativity is required.

General Spherical Symmetric Line Element

ds2 = −e2φ(r)(cdt)2 + e2λ(r)dr2 + r2dΩ2 . (3)

Outside the Neutron Star

The stress-energy tensor is zero, the solution to the Einstein
equations is the Schwarzschild solution.

Inside the Neutron Star

For the stress-energy tensor we take a perfect fluid, this is a
general fluid without viscosity or heat conduction. With pressure P
and energy density ρ

Tµν = ρ
uµuν

c2
+ P

(
gµν +

uµuν

c2

)
. (4)
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Interior Solution: Tolman-Oppenheimer-Volkoff Equation

In 1939 Tolman, Oppenheimer and Volkoff solved the Einstein
equation for a perfect fluid.

The solution gives a differential equation for the pressure and
energy density as a function of radius.

Tolman-Oppenheimer-Volkoff (TOV) Equation

dP(r)

dr
= −(P(r) + ρ(r))

(
Gm(r) + 4πGr3P(r)/c2

r(c2r − 2Gm(r))

)
, (5)

with

m(r) =
1

c2

∫ r

0
ρ(r ′) 4π(r ′)2 dr ′ . (6)

To solve this equation we need the equation of state (EOS)
P(ρ).



Simple Model General Relativity Nuclear matter Deconfinement QCD Conclusions

Interior Solution

The EOS for relativistic
neutrons can be derived from
homogeneous matter. We
thus have

ρ = 2

∫
d3k

(2π)3
θ(kF − k)ε(k)

and the thermal relation

P = − ∂E

∂V
= n µ− ρ .

We can express P(r) and ρ(r)
in terms of the particle
density n(r).

Maximum Mass with TOV
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The maximum mass is
0.7 M�.

The central density in
this star is about
1.5 fm−3.
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Baryonic Matter with Interactions through Mesons

The density is high enough to produce more massive baryons than
neutrons.

The interaction between the baryons is relevant for the phase
transition.

Effective Interaction Model for Baryons

Model the interaction through meson exchange and use a
mean-field approximation.

Use three types of mesons (scalar, vector and isovector).

Determine the couplings by comparison with data and
extrapolation.

Use 13 baryon types (n0, p+, Λ, Σ+,0,−, ∆++,+,0,−, Ξ0,−,
Ω−).

Use two types of leptons, the electron and muon. Tauon is
too heavy.
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Deconfined Quarks in Neutron Star Core

The density in a neutron star can be much greater than the nuclear
density and, therefore, there can possible be deconfined quarks
inside.

The MIT Bag Model

Description of hadrons in QCD is very complex.
Can be modeled by giving the quark vacuum extra
energy BV , with B the Bag constant. The energy
density

ρ = ρf + B ,

with ρf the energy density of free quarks, and the
pressure

P = − ∂E

∂V
= Pf − B .

Real Vacuum

Perturbative
Vacuum

The value of B is not known exactly, but about 200 MeV/fm3.
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Phase Transition with Two Conserved Quantities

Consider two phases, the nuclear phase and the quark phase.

Nuclear phase: many particles like neutron, proton, electron, . . .
Quark phase: three relevant flavors: up, down and strange

Conservation of Electric Charge and Baryon Number

Two conserved charges:
Electric charge and
Baryon number

→ two chemical potentials
µQ and µB

The particle chemical potentials (µn, µp, µe, µup, . . . ) are
determined from µQ and µB.

The EOS can be computed for both phases individually.

The Coulomb force can be included by demanding the matter
to be locally neutral.
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The Mixed Phase

The phase with lowest
grand potential Ω is the
one the system is in.

For the grand potential
we have: Ω = −PV

There does not always
exist a single phase with
neutral configuration and
lowest Ω or highest P.

This leads to a neutral
mixed phase.

Pressure of the Mixed Phase
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The blue lines are the charge
neutral phases. The yellow
line is the neutral mixed
phase.
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Solution of Mixed Baryon Quark Matter

Mixed Phase: Particle
Fractions
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Quark bag constant B is
230 MeV/fm3.

The maximum star mass
is 1.5 M� in this model.
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neutron star.

Possibility with correct
geometrical structure.

In center µB = 1500
MeV.
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The Strong Interaction

Quarks interact with the strong interaction described by QCD.

The quarks can have three colors (red, green, blue).

QCD based on nonabelian SU(3) gauge transformation, with gauge
bosons called gluons (Aa

µ).

The QCD Lagrangian

LQCD = ψ̄(/∂ + m)ψ + 1
2Aa

µ

(
∂µ∂ν − ∂2δµν

)
Aa

ν−ig ψ̄γµtaψAa
µ

+ 1
2g

(
∂µAa

ν − ∂νA
a
µ

)
f abcAb

µAc
ν

+ 1
4g2f abc f adeAb

µAc
µAd

νAe
ν
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Effective Quark-Quark Interaction

We can integrate out the gluon fields to get an effective
interaction.

Effective Action

Seff =
1

2

∫
d4x

∫
d4y ψ̄αi

f (x)ψβj
f (x)V αβγδ

ijkl (x − y)ψ̄γk
g (y)ψδl

g (y)

(7)
with the potential

V αβγδ
ijkl (x − y) = g2γαβ

µ γγδ
ν ta

ij t
a
klDµν(x − y)

The effective interaction contains the SU(3) group generators ta
ij ,

the gamma matrices for the spinor structure, and the gluon
propagator.



Simple Model General Relativity Nuclear matter Deconfinement QCD Conclusions

Attractive Quark-Quark Interaction

Effective Interaction

V αβγδ
ijkl (x − y) = g2γαβ

µ γγδ
ν ta

ij t
a
klDµν(x − y) (8)

The interaction is similar to the effective electron-electron
interaction in QED.

The difference are the group generators ta
ij t

a
kl .

The sign of this part determines whether the interaction is
attractive or repulsive.

Group structure

ta
ij t

a
kl = −1

3
(δijδkl − δilδkj) +

1

6
(δijδkl + δilδkj)

The red part is the antisymmetric part in j and l and is attractive!
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Conclusions

Neutron Star

A neutron star is dense enough to have a deconfined quark
phase.

This deconfined phase is most likely not pure, but is mixed
with the baryonic phase.

The baryon chemical potential is above 1500 MeV in the
center of the neutron star.

Superconductivity

Quarks have a fundamental attractive interaction and because
a neutron star is relatively cold, there can exist a
superconducting phase. This is presumably a 2SC phase as in
ultracold atomic gases.
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