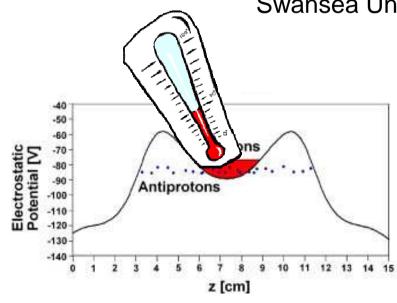
Modelling the behavior of the positron plasma temperature in antihydrogen experiments

Evandro Lodi Rizzini, Valerio Mascagna, Luca Venturelli, Nicola Zurlo

Università di Brescia & INFN-Italy

INFN
Istituto Nazionale
di Fisica Nucleare

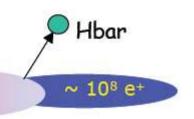
Michael Charlton Swansea University-Wales-UK



LEAP2013 Uppsala, June 11, 2013

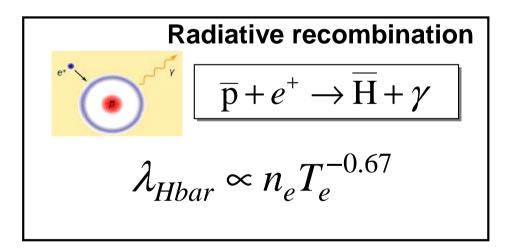
Why e+ plasma temperature is important?

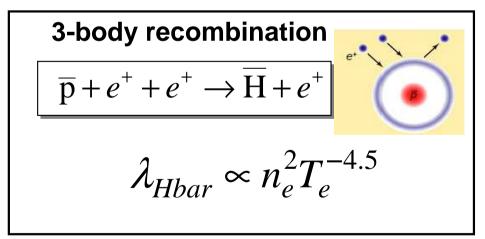
For experiments where Hbars are produced by overlapping pbars and e+



Hbar production rates depend on e+ plasma temperature

in both the expected Hbar production mechanisms:





~104 p-

$$\lambda_{Hbar}$$
 = Hbar production rate n_e = e+ density

$$n_e$$
 = e+ density

$$T_e$$
 = e+ temperature

e+ plasma temperature evaluations

- Evaluations of pbar temperature in Hbar experiments exist

See, for example: S.L. Rolston, G. Gabrielse, Hyperf. Inter. 44 (1988) 233.

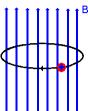
J. Bernard et al., NIM A 532 (2004) 224

- No direct evaluation of e+ plasma temperature for Hbar experiments

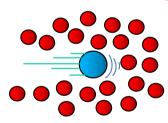
we present a simple model to evaluate $\ T_e$

The processes affecting the e+ plasma temperature

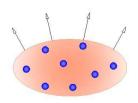
- synchrotron radiation (→ plasma cooling)

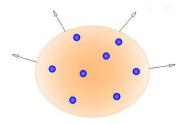


- antiprotons energy loss in the plasma (→ plasma heating)



- e+ plasma expansion (→ plasma heating)





e+ plasma temperatures: 1 or 2?

B=0

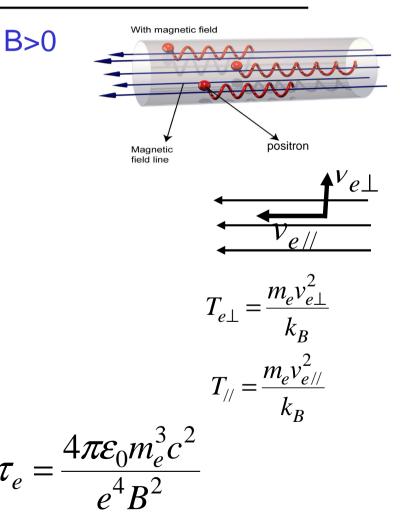
 $T_e \leftarrow$ only 1 temperature

For strongly magnetized plasma

possibly
$$T_{e\perp} \neq T_{e//}$$

But when
$$\lambda_{coll} >> \frac{1}{\tau_e}$$
 e+-e+ collision synchrotron frequency cooling time

$$\Rightarrow$$
 $T_{e\perp} = T_{e//} = T_e$



$$\lambda_{coll}$$

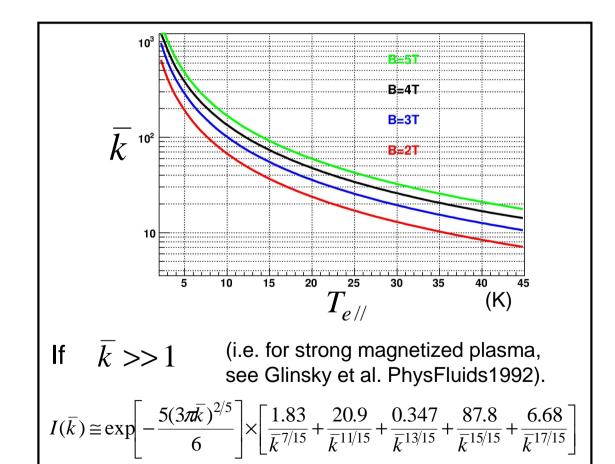
$$\lambda_{coll} = n_e \overline{v} \overline{b}^2 I(\overline{k})$$
 — See, for example Robicheaux JPB 2008

$$\overline{v} = \sqrt{2k_B \frac{T_{//}}{m_e}}$$

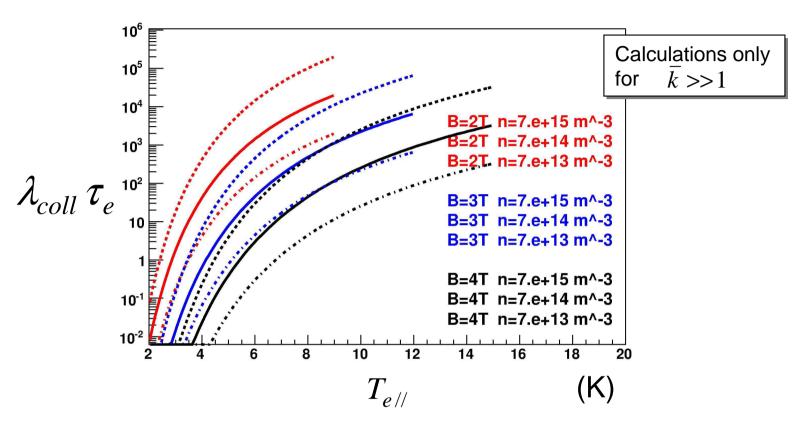
$$\overline{b} = \frac{2e^2}{4\pi\varepsilon_0 k_B T_{//}}$$

$$\bar{k} = \frac{eB\bar{b}}{m\bar{v}}$$

 $I(\overline{k})$ = suppression due to B



$$\lambda_{coll} >> \tau_e^{-1}$$
? $\Rightarrow T_{e\perp} = T_{e//} = T_e$



- For ATHENA, ALPHA, ASACUSA: $\lambda_{coll} ~ au_e >> 1$
- For ATRAP (B=5.4 T, n_e = 4 10¹³ m⁻³, assuming environmental temperature =4.2 K):

Synchrotron radiation cooling

due to e+ cyclotron rotation in B

From Larmour formula for Maxwellian distribution:

Assuming
$$T_{e\perp} >> T_{res}$$

$$\frac{dT_{e\perp}}{dt} = -\frac{3}{2} \frac{1}{\tau_e} T_{e\perp}$$
 environmental temperature

$$\frac{dT_{e\perp}}{dt} = -\frac{3}{2} \frac{1}{\tau_e} T_{e\perp}$$
 (s1)

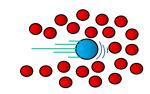
$$\tau_e = \frac{4\pi\varepsilon_0 m_e^3 c^2}{e^4 B^2}$$

if
$$\lambda_{coll} >> \frac{1}{\tau_e}$$
 then $T_{e\perp} = T_{e//} = T_e$ (s1) becomes $\frac{dT_e}{dt} = -\frac{1}{\tau_e}T_e$

If
$$T_e \approx T_{res} \implies$$

If
$$T_e pprox T_{res} \implies \boxed{ \frac{dT_e}{dt} = -\frac{T_e - T_{res}}{\tau_e} }$$
 $\left(\lambda_{coll} >> \frac{1}{\tau_e}\right)$

Antiproton energy loss



due to Rutherford collisions

$$\frac{dT_i}{dt} = -\frac{1}{\tau_i} (T_i - T_e)$$

 T_i = pbar temperature

with:

$$\tau_{i} = \frac{3m_{e}m_{i}c^{3}}{8\sqrt{2\pi}n_{e}Z^{2}\ln(\Lambda)} \left(\frac{4\pi\varepsilon_{0}}{e^{2}}\right)^{2} \left(\frac{k_{B}T_{i}}{m_{i}c^{2}} + \frac{k_{B}T_{e}}{m_{e}c^{2}}\right)^{\frac{3}{2}}$$

L. Spitzer, Physics of Fully Ionised Gases, 1956.

$$\ln(\Lambda) = \ln\left(\frac{b_{\text{max}}}{b_{\text{min}}}\right) = \ln\left(4\pi\left(\frac{\varepsilon_0 k_B}{e^2}\right)^{\frac{3}{2}} \frac{1}{Z} \sqrt{\frac{T_e}{n_e}} \left(T_e + \frac{m_e}{m_i} T_i + 2\sqrt{\frac{m_e}{m_i}} \sqrt{T_e T_i}\right)\right)$$

when T_i decreases, T_e increases

ecreases,
$$I_e$$
 increases
$$\frac{dT_e}{dt} = \frac{1}{\tau_i} \frac{N_i}{N_e} (T_i - T_e)$$

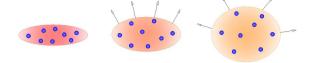
$$\int_{N_e}^{N_i} = \text{pbars number}$$

$$\int_{N_e}^{N_e} = \text{e+ number}$$
 Sharing the same volume

$$N_i$$
 = pbars number N_e = e+ number

Sharing the same volume

e+ plasma expansion



due to not optimal vacuum and/or e.m. field asymmetry/misalignement

From energy conservation (electrostatic energy → internal energy):

$$\frac{dT_e}{dt} = \frac{e^2}{6\varepsilon_0 k_B} n_e r_e^2 \frac{1}{r_e} \frac{dr_e}{dt}$$

 r_e = e+plasma radius

 n_{ρ} = e+plasma density

Since in Hbar experiment $n_e r_e^2$ is costant =>

$$\frac{dT_e}{dt} = \frac{e^2}{6\varepsilon_0 k_B} \left(n_e r_e^2 \right)_0 \frac{1}{r_e} \frac{dr_e}{dt}$$

expansion velocity

The model: equations system

Considering: synchrotron radiation + pbar energy loss + plasma expansion the e+ temperature must satisfy the system:

$$\frac{dT_e}{dt} = -\frac{T_e - T_{res}}{\tau_e} + \frac{1}{\tau_i} \frac{N_i}{N_e} (T_i - T_e) + \frac{e^2}{6\varepsilon_0 k_B} (n_e r_e^2)_0 \frac{1}{r_e} \frac{dr_e}{dt}$$

$$\frac{dT_i}{dt} = -\frac{1}{\tau_i} (T_i - T_e) \qquad \left(\lambda_{coll} >> \frac{1}{\tau_e}\right)$$

- The equation system is linear in T_{res} => the T_e behaviors are independent of T_{res}

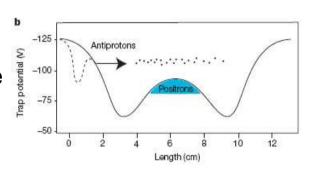
The model: modified equations system

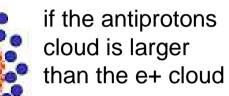
2 parameters to consider the effect of the partial phars-positrons overlap:

P parameter

pbars are not continuosly inside the e+ plasma

$$P \le 1$$





$$M \leq 1$$

$$\frac{dT_e}{dt} = -\frac{T_e - T_{res}}{\tau_e} + M P \frac{1}{\tau_i} \frac{N_i}{N_e} (T_i - T_e) + \frac{e^2}{6\varepsilon_0 k_B} (n_e r_e^2)_0 \frac{1}{r_e} \frac{dr_e}{dt}$$

$$\frac{dT_i}{dt} = -P \frac{1}{\tau_i} (T_i - T_e)$$

$$\left(\lambda_{coll} >> \frac{1}{\tau_e}\right)$$

The solutions (T_{ρ} , T_{i}) depend on many parameters:

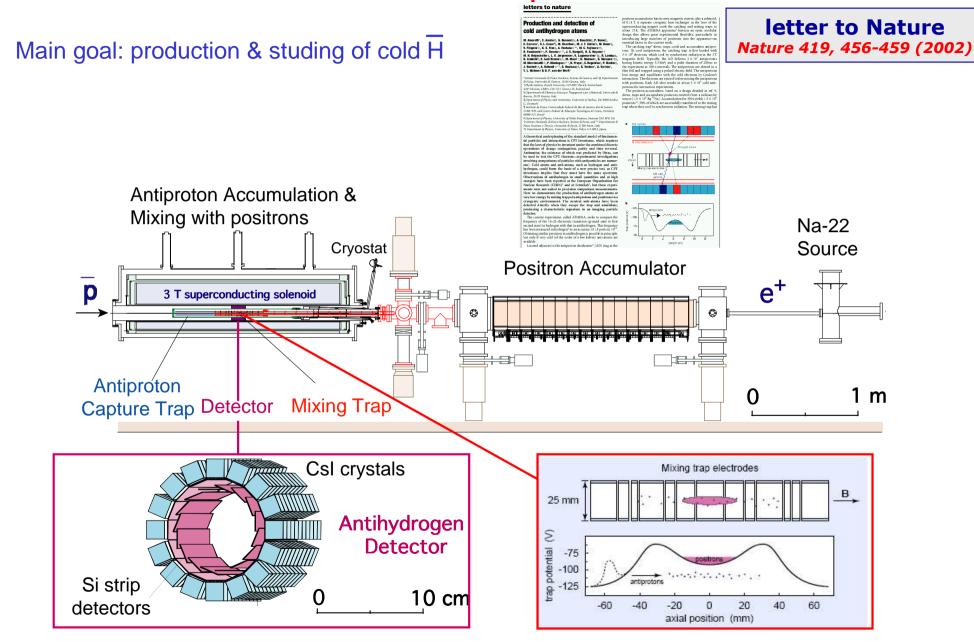
$$B \quad E_0 \quad T_0 \quad T_{res} \quad M \quad P \quad N_e \quad N_i \quad v_0 = \frac{dr_e}{dt} \quad (n_e r_e^2)_0$$

no universal solution exists

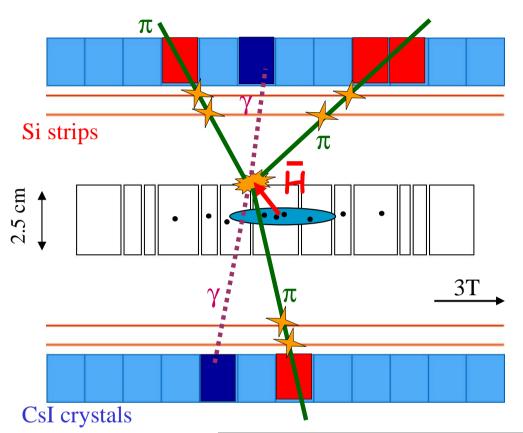
Each particular case has to be considered

The ATHENA case ...

The ATHENA Experiment



How ATHENA worked



- 10⁴ p̄ & 10⁸ e⁺ are mixed in Penning trap
- H form and fly away
- H annihilate on trap wall

Offline selection of H annihilation:

Coincidence in space & time (<5ms) of:

- p annihilation (charged pion vertex)
- e⁺ annihilation (2 back-to-back 511 keV γ)

The ATHENA case

COLD MIX 2003

- The condition $\lambda_{coll} \tau_e >> 1 \ (\Rightarrow T_{e\perp} = T_{e/l} = T_e)$ is always satisfied

- Values used in the simulations:

$$B = 3 \,\mathrm{T}$$
 $\tau_e = \frac{1}{0.39 \,B^2} \,\mathrm{s} = 0.3 \,\mathrm{s}$

$$E_0$$
=16 eV \leftarrow pbar initial energy

$$T_0$$
=Tres=15 K \leftarrow e⁺ initial temperature

$$N_i=1 \ 10^4 \leftarrow pbars number$$

$$N_e = 7.5 \ 10^7 \leftarrow e + number$$

Quantities modified:

$$v_0 = \frac{dr_e}{dt} = 0 - 20 \, 10^{-6} \, \text{m/s}$$

← e⁺ expansion velocity

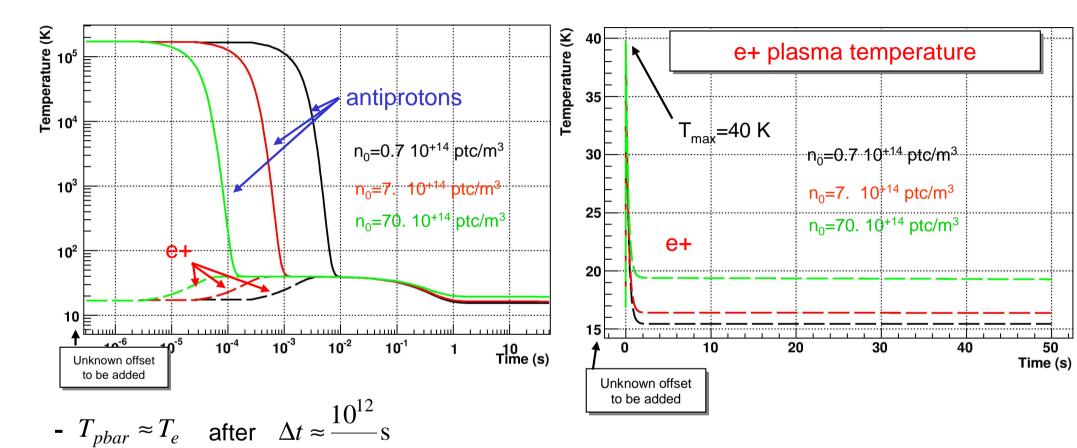
$$n_0$$
=0.7-70 10⁺¹⁴ ptc/m³ \leftarrow e⁺ initial density

$$R_0$$
=1. 10⁻³ *(7. 10⁺¹⁴ / n_0) m \leftarrow e⁺ initial radius

The ATHENA case

COLD MIX 2003

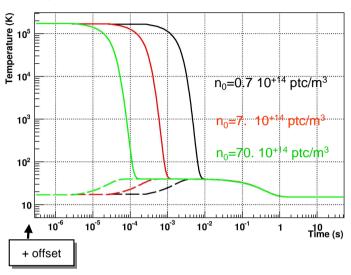
$$v_0 = 0.2 \, 10^{-6} \, \text{m/s}$$
 \leftarrow experimental

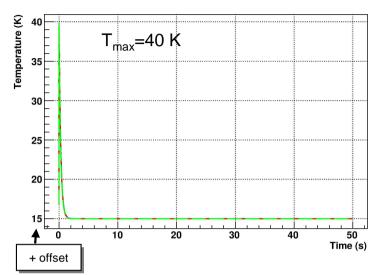


- T_e maximum increase is $\approx 25 \text{ K}$
- Equilibrium of T_e after less than 1 s
- T_e values at equilibrium depend on the density (\leftarrow expansion), but the differences are small

The ATHENA case – different expansion velocity

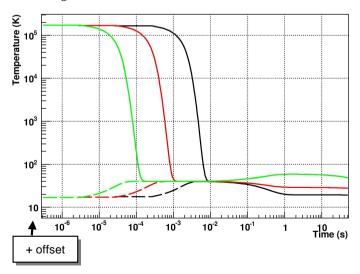
$$v_0 = 0$$
 no expansion

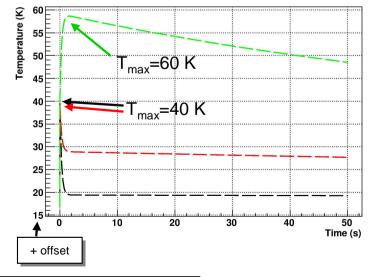




Similar to the case with $v_0 = 0.2 \, 10^{-6} \, \text{m/s}$ but same T_e at late times $(T_e \approx T_{res})$

$$v_0 = 2 \cdot 10^{-6} \text{ m/s} \leftarrow \text{x10 experimental value}$$





Different maximum T_e values

Different T_e at late time

For high densities T_e slowly decreases

expansion process can strongly influence T_{e}

The ATHENA case - How to check the model?

Direct check of the model with the experimental data is difficult

We can use the "reinjection data"

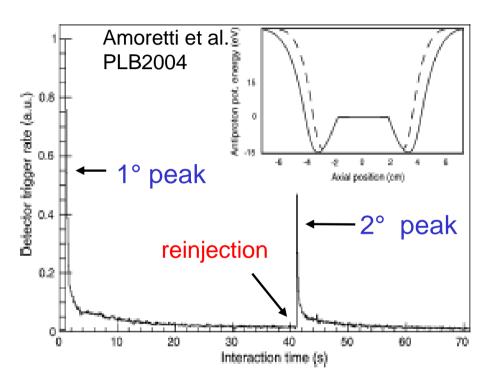


Fig. 5. Trigger rate during re-injection after 40 s. The corresponding peak is mainly due to antihydrogen production. In the inset, the on-axis potentials applied to re-inject the antiprotons into the positron plasma, are displayed (dashed lines).

The experiment

- At t=0 standard e+-pbar mixing.
 The 1° peak corresponds to the detected Hbars. Other Hbars are field-ionized and their pbars can fill the lateral wells
- After 40s pbars are re-injected into e+ plasma by adiabatically compressing the 2 side wells. Hbar formation restart and 2° peak appears.

2° peak is similar to the 1° peak

⇔ e+ plasma conditions (@40s) are similar to the initial ones (t=0)

In agreement with simulations (where $T_e \rightarrow T_{res}$ after 2s)

The ASACUSA case ...

The ASACUSA Experiment



The ASACUSA case 2010

$$B = 2.7 \,\mathrm{T}$$
 $\tau_e = \frac{1}{0.39 \,B^2} \,\mathrm{s}$

$$P = 0.3$$

$$M = 1$$

$$E_0=13 \text{ eV}$$

P = 0.3 M = 1 $E_0 = 13$ eV \leftarrow pbar initial energy

 $R_0 = 0.5 \ 10^{-3} \ m$

← e+ initial radius

 $N_{e} = 3 \cdot 10^{6}$

← e+ number

 $n_0=1. 10^{+13} \text{ ptc/m}^3 \leftarrow \text{e+ initial density}$

 T_0 =Tres=100 K \leftarrow e+ initial temperature

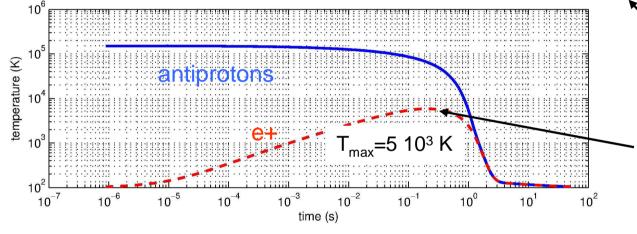
 $N_i = 3 \cdot 10^5$

← pbars number

 $v_0=70 \ 10^{-6} \ \text{m/s} \quad \leftarrow \text{e+ expansion velocity}$

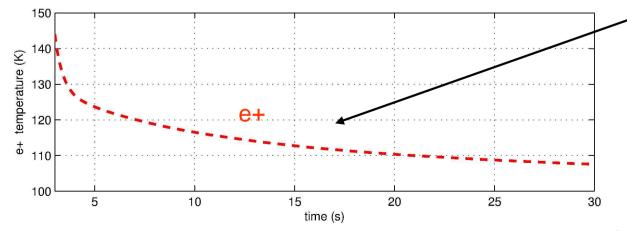
 $T_{res}=100 K$

← environment temperature

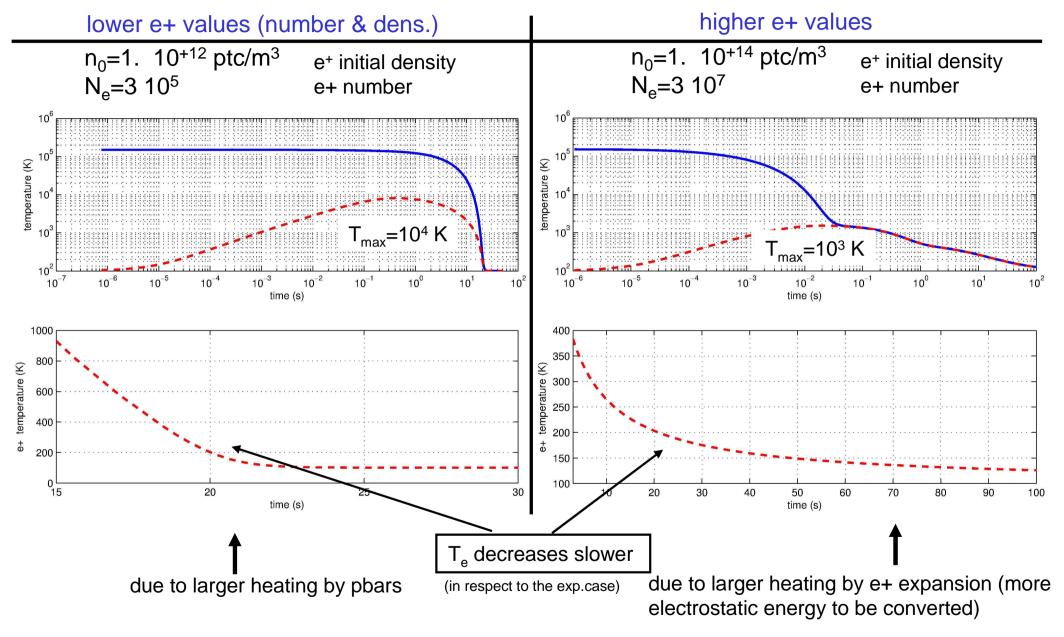


Large number of pbars strongly increases T_{e}

 T_{ρ} slowly decreases due to the fast expansion and large pbars number



The ASACUSA case - different e+ values 2010



=> The exp. case is a lucky compromise between heating from pbar energy loss and from e+ expansion

=> More e+ is not always the best

The ASACUSA case

2012

Same conditions as in 2010 but:

$$R_0 = 0.25 \ 10^{-3} \ m$$

$$v_0 = 10 \ 10^{-6} \ \text{m/s}$$

$$n_0 = 1. 10^{+14} \text{ ptc/m}^3$$

$$N_e = 3 \cdot 10^7$$

← e+ initial radius

← e⁺ expansion velocity

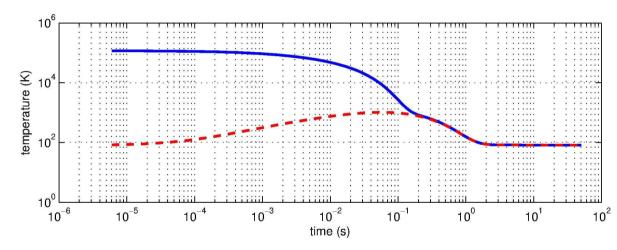
← e⁺ initial density

← e+ number

 E_0 =10 eV \leftarrow pbar initial energy

 T_0 =80 K \leftarrow e⁺ initial temperature

 T_{res} =80 K \leftarrow environment temperature



Better e+ conditions in respect to 2010 case

 \Rightarrow T_{e}

 T_e quickly decreases

Conclusion

A simple model to evaluate T_e has been performed

The model includes collisional, radiative and plasma expansion effects (together for the 1° time)

Some results from the model qualitatively agree with the experimental data

The analysis of the model results suggest that some naive expectations can be wrong (for example: "more $e+ \Leftrightarrow lower T_e$ ")

The model can also be used for the ALPHA case and it can be extended to include the ATRAP case