Theory overview of testing fundamental symmetries

Nick E. Mavromatos
King's College London &
CERN/PH-TH

London Centre for Terauniverse Studies (LCTS) AdV 267352

LEAP 2013, June 10-15 2013, Ångström Lab, Uppsala, Sweden

- I. Motivation: Quantum OR Classical Gravity (Geometrical Backgrounds in Early Universe) may violate fundamental space-time symmetries: either continuous (Lorentz) or discrete (T & CPT) and/or induced decoherence of quantum matter
- II. Parametrization: from (I) → to Standard Model Extension and beyond...
- III. Overview of Tests in particle physics: From Cosmic photons and ultra-high energy neutrinos to low-energy antiprotons & antimatter factories observables & sensitivities

IV. Outlook

- I. Motivation: Quantum OR Classical Gravity (Geometrical Backgrounds in Early Universe) may violate fundamental space-time symmetries: either continuous (Lorentz) or discrete (T & CPT) and/or induced decoherence of quantum matter
- II. Parametrization: from (I) → to Standard Model Extension and beyond...
- III. Overview of Tests in particle physics: From Cosmic photons and ultra-high energy neutrinos to low-energy antiprotons & antimatter factories observables & sensitivities

IV. Outlook

- I. Motivation: Quantum OR Classical Gravity (Geometrical Backgrounds in Early Universe) may violate fundamental space-time symmetries: either continuous (Lorentz) or discrete (T & CPT) and/or induced decoherence of quantum matter
- II. Parametrization: from (I) → to Standard Model Extension and beyond...
- III. Overview of Tests in particle physics: From Cosmic photons and ultra-high energy neutrinos to low-energy antiprotons & antimatter factories observables & sensitivities

IV. Outlook

emphasis in: spectroscopy, dipole moments, tests of time reversal (independent of CP, CPT)

I. Motivation. Quantum OR Classical Gravity (Geometrical Backgrounds in Early Universe) may violate

scenarios for a possible microscopic origin of some of SME coefficients

e-time symmetries: either itz) or discrete (T & CPT) coherence of quantum matter

- II. Parametrization: from (I) → to Standard Model Extension and beyond...
- III. Overview of Tests in particle physics: From Cosmic photons and ultra-high energy neutrinos to low-energy antiprotons & antimatter factories observables & sensitivities

IV. Outlook

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem:

- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Schwinger, Pauli, Luders, Jost, Bell revisited by: Greenberg, Chaichian, Dolgov, Novikov...

(ii)-(iv) Independent reasons for violation

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem:

- (i) Flat space-times
- (i) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Kostelecky, Potting, Russell, Lehnert, Mewes, Diaz Standard Model Extension (SME) PHENOMENOLOGICAL 3-LV parameter (texture) model for neutrino oscillations fitting also LSND, MINOS

(ii)-(iv) Independent reasons for violation

CPT VIOLATION

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem:

- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Barenboim, Borissov, Lykken PHENOMENOLOGICAL models with non-local mass parameters

(ii)-(iv) Independent reasons for violation

$$\mathbf{S} = \int d^4x \, \bar{\psi}(x) i \not \! \partial \psi(x) + \frac{im}{\pi} \int d^3x \int dt dt' \, \bar{\psi}(t, \mathbf{x}) \, \frac{1}{t - t'} \, \psi(t', \mathbf{x}).$$

CPT VIOLATION

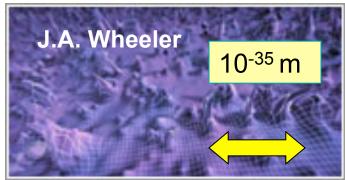
Conditions for the Validity of CPT Theorem

CPT Invariance Theorem:

- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

(ii)-(iv) Independent reasons for violation

e.g. **QUANTUM SPACE-TIME FOAM AT PLANCK SCALES**



CPT VIOLATION

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem:

- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Hawking, Ellis, Hagelin, Nanopoulos Srednicki, Banks, Peskin, Strominger, Lopez, NEM, Barenboim...

(ii)-(iv) Independent reasons for violation

QUANTUM GRAVITY INDUCED DECOHERENCE EVOLUTION OF PURE QM STATES TO MIXED AT LOW ENERGIES

LOW ENERGY CPT OPERATOR NOT WELL DEFINED

10⁻³⁵ m

cf. ω-effect in EPR entanglement

IF DECOHERENCE IS IGNORED → POSSIBLE TO PARAMETRISE LORENTZ \$/OR CPT VIOLATING EFFECTS WITHIN THE FRAMEWORK OF EFFECTIVE FIELD THEORY → STANDARD MODEL EXTENSION (SME)

IN THE PRESENCE OF DECOHERENCE, ILL-DEFINED NATURE OF CPT OPERATOR FOR THE LOW ENERGY THEORY > BEYOND LOCAL EFFECTIVE FIELD THEORIES

 \rightarrow (cf. ω -effects on modifications of EPR correlations of ENTANGLED PARTICLE STATES)

PARTICLE PHYSICS TESTS OF THE SME

STANDARD MODEL EXTENSION

Kostelecky et al.

$$\mathcal{L} = \frac{1}{2} \mathrm{i} \bar{\psi} \Gamma^{\nu} \bar{\partial}_{\nu} \psi - \bar{\psi} M \psi, \qquad M \equiv m + a_{\mu} \gamma^{\mu} + b_{\mu} \gamma_5 \gamma^{\mu} + \frac{1}{2} H^{\mu\nu} \sigma_{\mu\nu}$$

$$\Gamma^{\nu} \equiv \gamma^{\nu} + c^{\mu\nu}\gamma_{\mu} + d^{\mu\nu}\gamma_{5}\gamma_{\mu} + e^{\nu} + if^{\nu}\gamma_{5} + \frac{1}{2}g^{\lambda\mu\nu}\sigma_{\lambda\mu}$$

STANDARD MODEL EXTENSION

V.A. Kostelecký, R. Bluhm, D. Colladay, R. Lehnert, R. Potting, N. Russell

In this case Lorentz symmetry is violated and hence CPT, but no quantum decoherence or unitarity loss. CPT well-defined operator, does not commute with Hamiltonian of the system.

String theory (non supersymmetric) \to Tachyonic instabilities, coupling with tensorial fields (gauge etc), $\to < A_{\mu} > \neq 0$, $< T_{\mu_1 \dots \mu_n} > \neq 0$,

Spontaneous breaking of Lorentz symmetry by (exotic) string vacua MODIFIED DIRAC EQUATION in SME: for spinor ψ reps. electrons, quarks etc. with charge q

$$(i\gamma^{\mu}D^{\mu} - M - a_{\mu}\gamma^{\mu} - b_{\mu}\gamma_{5}\gamma^{\mu} - \frac{1}{2}H_{\mu\nu}\sigma^{\mu\nu} + ic_{\mu\nu}\gamma^{\mu}D^{\nu} + id_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$

where $D_{\mu} = \partial_{\mu} - A_{\mu}^a T^a - q A_{\mu}$.

effects

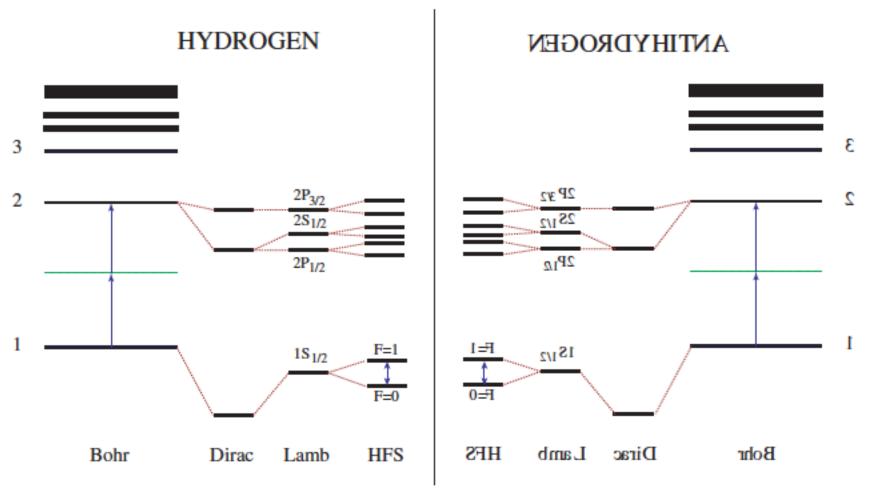
CPT & Lorentz violation: a_{μ} , b_{μ} . Lorentz violation only: $c_{\mu\nu}$, $d_{\mu\nu}$, $H_{\mu\nu}$.

NB1: : mass differences between particle/antiparticle not necessarily.

NB2: In general $a_{\mu}, b_{\mu}...$ might be energy dependent and NOT constants (c.f. Lorentz-Violation due to quantum space time foam, back reaction effects); ALSO in stochastic models of QG

 $\langle a_{\mu} , b_{\mu} \rangle = 0, \quad \langle a_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} b_{\nu} \rangle \neq 0, \text{ etc } \dots \text{ much more suppressed}$

CPT symmetry requires atomic transitions between H and anti-H to be identical



Rep. Prog. Phys. **70** (2007) 1995–2065 Hayano *et al.*

STANDARD MODEL EXTENSION

V.A. Kostelecký, R. Bluhm, D. Colladay, R. Lehnert, R. Potting, N. Russell

In this case Lorentz symmetry is violated and hence CPT, but no quantum decoherence or unitarity loss. CPT well-defined operator, does not commute with Hamiltonian of the system.

String theory (non supersymmetric) \rightarrow Tachyonic instabilities, coupling with tensorial fields (gauge etc), $\rightarrow < A_{\mu} > \neq 0$, $< T_{\mu_1 \dots \mu_n} > \neq 0$,

Spontaneous breaking of Lorentz symmetry by (exotic) string vacua MODIFIED DIRAC EQUATION in SME: for spinor ψ reps. electrons, quarks etc. with charge q

$$(i\gamma^{\mu}D^{\mu} - M - a_{\mu}\gamma^{\nu} - b_{\mu}\gamma_{5}\gamma^{\mu} -) - \frac{1}{2}H_{\mu\nu}\sigma^{\mu\nu} + ic_{\mu\nu}\gamma^{\mu}D^{\nu} + id_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$

where $D_{\mu} = \partial_{\mu} - A_{\mu}^{a} T^{a} - q A_{\mu}$.

effects

CPT & Lorentz violation: a_{μ} , b_{μ} . Lorentz violation only: $c_{\mu\nu}$, $d_{\mu\nu}$, $H_{\mu\nu}$.

NB1: : mass differences between particle/antiparticle not necessarily.

NB2: In general $a_{\mu}, b_{\mu}...$ might be energy dependent and NOT constants (c.f. Lorentz-Violation due to quantum space time foam, back reaction effects); ALSO in stochastic models of QG

 $\langle a_{\mu} , b_{\mu} \rangle = 0, \quad \langle a_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} b_{\nu} \rangle \neq 0, \text{ etc } \dots \text{ much more suppressed}$

Lorentz Violation & (Anti)-Hydrogen

Trapped Molecules:
 Forbidden transitions
 e.g. 1s → 2s

NB: Sensitivity in b₃
that rivals astrophysical
or atomic-physics
bounds can only be
attained if spectral
resolution of 1 mHz
is achieved.
Not feasible at present in
anti-H factories

EXPER.	SECTOR	PARAMS. (J=X,Y)	BOUND (GeV)
Penning Trap	electron	_ e b _J	5 x 10 ⁻²⁵
	electron	_b e e	10 -27
Hg-Cs clock comparison	proton	$\overline{b}^{1}b$	10 -27
	neutron	$\overline{b_J}^n$	-30 10
H Maser	electron	$\overline{\mathbf{b}_{\mathbf{J}}}^{\mathbf{e}}$	10 -27
	proton	Б р	-27 10
spin polarized matter	electron	$b_{J}^{-}e/\overline{b_{Z}^{e}}$	10 -29 10 -28
He–Xe Maser	neutron	_b n	10 -31
Muonium	muon	$\overline{\mathbf{b_J}}^{\mu}$	2 x 10 ⁻²³
Muon g–2	muon	$\overline{\mathbf{b_J}}^{\mu}$	5 x 10 ⁻²⁵ (estimated)

X,Y.Z celestial equatorial coordinates $\overline{b_J} = b_3 - md_{30} - H_{12}$ (Bluhm, hep-ph/0111323)

NB
$$|B^0| < 10^{-2} \, \text{eV}$$

LORENTZ-VIOLATING QUANTUM ELECTRODYNAMICS (LV QED)

EFT Approach for dimension 5 operators (relevant for dipole moments)

$$O_{\mu\nu\dots}^{\mathrm{SM}}C^{\mu\nu\dots} \to O_{\mu\nu\dots}^{\mathrm{SM}}\langle C^{\mu\nu\dots}\rangle$$

Bolokhov, Pospelov 0703291.

Contributions to Matter & Gauge sectors → Complete classification Operators must be:

- gauge invariant
- Lorentz invariant, after contraction with a background tensor
- not reducible to lower dimension operators by the equations of motion
- not reducible to a total derivative
- coupled to an irreducible background tensor.

Gauge Sector of QED

Only term

$$C^{\mu\nu\rho} F_{\mu\lambda} \partial_{\nu} \widetilde{F}_{\rho}^{\ \lambda} , \qquad C^{\mu}_{\ \mu}{}^{\rho} = 0 .$$

Because:

$$\begin{split} F_{\mu\nu}\partial_{\lambda}F_{\rho\sigma} &= \\ &- \frac{1}{5}\epsilon_{\mu\nu\rho\chi}\,\widetilde{F}^{\zeta\chi}\partial_{\lambda}F_{\zeta\sigma} \ + \ \frac{1}{5}\epsilon_{\mu\nu\sigma\chi}\,\widetilde{F}^{\zeta\chi}\partial_{\lambda}F_{\zeta\rho} \ + \ \frac{1}{5}\epsilon_{\rho\sigma\mu\chi}\,\widetilde{F}^{\zeta\chi}\partial_{\lambda}F_{\zeta\nu} \ - \ \frac{1}{5}\epsilon_{\rho\sigma\nu\chi}\,\widetilde{F}^{\zeta\chi}\partial_{\lambda}F_{\zeta\mu} \\ &- \frac{1}{10}\epsilon_{\mu\lambda\rho\chi}\widetilde{F}^{\zeta\chi}\partial_{\nu}F_{\zeta\sigma} \ + \ \frac{1}{10}\epsilon_{\nu\lambda\rho\chi}\widetilde{F}^{\zeta\chi}\partial_{\mu}F_{\zeta\sigma} \ + \\ &+ \frac{1}{10}\epsilon_{\mu\lambda\sigma\chi}\widetilde{F}^{\zeta\chi}\partial_{\nu}F_{\zeta\rho} \ - \ \frac{1}{10}\epsilon_{\nu\lambda\sigma\chi}\widetilde{F}^{\zeta\chi}\partial_{\mu}F_{\zeta\rho} \ . \end{split}$$

Matter Sector of QED

$$\mathcal{L}_{\text{QED}}^{\text{matter}} =
\begin{bmatrix}
[c_{1}^{\mu} \cdot \overline{\psi} \, \gamma^{\lambda} F_{\mu \lambda} \psi^{+}] + [c_{2}^{\mu} \cdot \overline{\psi} \, \gamma^{\lambda} \gamma^{5} F_{\mu \lambda} \psi^{-}] + \widetilde{c}_{1}^{\mu} \cdot \overline{\psi} \, \gamma^{\lambda} \widetilde{F}_{\mu \lambda} \psi^{+} + \widetilde{c}_{2}^{\mu} \cdot \overline{\psi} \, \gamma^{\lambda} \gamma^{5} \widetilde{F}_{\mu \lambda} \psi^{-} \\
+ f_{1}^{\mu \nu} \cdot \overline{\psi} \, F_{\mu \nu} \psi^{-} + f_{2}^{\mu \nu} \cdot \overline{\psi} \, F_{\mu \nu} \gamma^{5} \psi^{-} + h_{1}^{\mu \nu} \cdot \overline{\psi} \, \mathcal{D}_{(\mu} \mathcal{D}_{\nu)} \psi^{+} + h_{2}^{\mu \nu} \cdot \overline{\psi} \, \mathcal{D}_{(\mu} \mathcal{D}_{\nu)} \gamma^{5} \psi^{+} \\
+ C_{1}^{\mu \nu \rho} \cdot \overline{\psi} \, \gamma_{(\mu} \mathcal{D}_{\nu} \mathcal{D}_{\rho)} \psi^{-} + C_{2}^{\mu \nu \rho} \cdot \overline{\psi} \, \gamma_{(\mu} \gamma^{5} \mathcal{D}_{\nu} \mathcal{D}_{\rho)} \psi^{+} \\
+ D_{1}^{\mu \nu \rho} \cdot \overline{\psi} \, \gamma_{(\mu} F_{\rho)\nu} \psi^{+} + D_{2}^{\mu \nu \rho} \cdot \overline{\psi} \, \gamma_{(\mu} F_{\rho)\nu} \gamma^{5} \psi^{-} \\
+ E_{1}^{\mu \nu \rho \lambda} \cdot \overline{\psi} \, \sigma_{\mu)\nu} \mathcal{D}_{(\rho} \mathcal{D}_{\lambda} \psi^{-} + E_{2}^{\mu \nu \rho \lambda} \cdot \overline{\psi} \, \sigma_{\mu)(\lambda} F_{\rho)(\nu} \psi^{+} + E_{3}^{\mu \nu \rho \lambda} \cdot \overline{\psi} \, \sigma_{\mu)[\nu} F_{\rho](\lambda} \psi^{+} \\
+ E_{4}^{\mu \nu \rho \lambda} \cdot \overline{\psi} \, \left(\sigma_{\mu)[\nu} \mathcal{D}_{\rho]} \mathcal{D}_{(\lambda} - \sigma_{\nu](\mu} \mathcal{D}_{\lambda)} \mathcal{D}_{[\rho} + 2 \, \sigma_{\nu \rho} \mathcal{D}_{(\mu} \mathcal{D}_{\lambda)}) \, \psi^{-} \right].$$

Standard Model

Gauge Sector

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{gauge}} = C_{\mathrm{U}(1)}^{\mu\nu\rho} \cdot F_{\mu\lambda} \, \partial_{\nu} \, \widetilde{F}_{\rho}^{\ \lambda} + C_{\mathrm{SU}_{\mathrm{L}}(2)}^{\mu\nu\rho} \cdot \operatorname{tr} W_{\mu\lambda} \, \mathcal{D}_{\nu} \, \widetilde{W}_{\rho}^{\ \lambda} + C_{\mathrm{SU}_{\mathrm{C}}(3)}^{\mu\nu\rho} \cdot \operatorname{tr} G_{\mu\lambda} \, \mathcal{D}_{\nu} \, \widetilde{G}_{\rho}^{\ \lambda} \, .$$

Quark Sector

Lepton Sector

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{lepton}} =$$

$$c_{L}^{\mu} \cdot \overline{L} \gamma^{\lambda} F_{\mu \lambda} L + \widetilde{c}_{L,1}^{\mu} \cdot \overline{L} \gamma^{\lambda} \widetilde{F}_{\mu \lambda} L + \widetilde{c}_{L,2}^{\mu} \cdot \overline{L} \gamma^{\lambda} \widetilde{W}_{\mu \lambda} L +$$

$$+ \widetilde{c}_{\nu}^{\mu} \cdot \overline{\psi}_{\nu} \gamma^{\lambda} \widetilde{F}_{\mu \lambda} \psi_{\nu} + \widetilde{c}_{e}^{\mu} \cdot \overline{\psi}_{e} \gamma^{\lambda} \widetilde{F}_{\mu \lambda} \psi_{e} +$$

$$+ C_{L}^{\mu \nu \rho} \cdot \overline{L} \gamma_{(\mu} \mathcal{D}_{\nu} \mathcal{D}_{\rho)} L + C_{\nu}^{\mu \nu \rho} \cdot \overline{\psi}_{\nu} \gamma_{(\mu} \mathcal{D}_{\nu} \mathcal{D}_{\rho)} \psi_{\nu} + C_{e}^{\mu \nu \rho} \cdot \overline{\psi}_{e} \gamma_{(\mu} \mathcal{D}_{\nu} \mathcal{D}_{\rho)} \psi_{e} +$$

$$+ D_{L,1}^{\mu \nu \rho} \cdot \overline{L} \gamma_{(\mu} F_{\rho)\nu} L + D_{L,2}^{\mu \nu \rho} \cdot \overline{L} \gamma_{(\mu} W_{\rho)\nu} L +$$

$$+ D_{\nu}^{\mu \nu \rho} \cdot \overline{\psi}_{\nu} \gamma_{(\mu} F_{\rho)\nu} \psi_{\nu} + D_{e}^{\mu \nu \rho} \cdot \overline{\psi}_{e} \gamma_{(\mu} F_{\rho)\nu} \psi_{e} .$$

Higgs Sector

Higgsgauge

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{Higgs-gauge}} =$$

$$\begin{split} l^{\mu} \cdot i \, H^{\dagger} H \cdot H^{\dagger} \mathcal{D}_{\mu} H &+ \kappa^{\mu\nu\rho} \cdot i \, H^{\dagger} \mathcal{D}_{(\mu} \mathcal{D}_{\nu} \mathcal{D}_{\rho)} H &+ \\ &+ m_{1}^{\mu} \cdot i \, H^{\dagger} F_{\mu\lambda} \mathcal{D}^{\lambda} H &+ m_{2}^{\mu} \cdot i \, H^{\dagger} W_{\mu\lambda} \mathcal{D}^{\lambda} H &+ \text{h.c.} &+ \\ &+ \widetilde{m}_{1}^{\mu} \cdot i \, H^{\dagger} \widetilde{F}_{\mu\lambda} \mathcal{D}^{\lambda} H &+ \widetilde{m}_{2}^{\mu} \cdot i \, H^{\dagger} \widetilde{W}_{\mu\lambda} \mathcal{D}^{\lambda} H &+ \\ &+ m_{1}^{\mu\nu\rho} \cdot i \, H^{\dagger} F_{\nu(\mu} \mathcal{D}_{\rho)} H &+ m_{2}^{\mu\nu\rho} \cdot i \, H^{\dagger} W_{\nu(\mu} \mathcal{D}_{\rho)} H &+ \text{h.c.} \end{split}$$

Higgsquark

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{Higgs-quark}} = h_{QQ}^{\mu} \cdot \overline{Q} H \gamma_{\mu} H^{\dagger} Q +$$

$$+ p_{QQ}^{\mu} \cdot \overline{Q} \gamma_{\mu} Q \cdot H^{\dagger} H + p_{uu}^{\mu} \cdot \overline{u} \gamma_{\mu} u \cdot H^{\dagger} H + p_{dd}^{\mu} \cdot \overline{d} \gamma_{\mu} d \cdot H^{\dagger} H$$

$$+ q_{Qd}^{(1)\mu} \cdot \overline{Q} d \mathcal{D}_{\mu} H + q_{Qu}^{(1)\mu} \cdot \overline{Q} u \mathcal{D}_{\mu} \epsilon H^{*} + \text{h.c.}$$

$$+ q_{Qd}^{(2)\nu} \cdot \overline{Q} \sigma^{\mu\nu} d \mathcal{D}_{\nu} H + q_{Qu}^{(2)\nu} \cdot \overline{Q} \sigma^{\mu\nu} u \mathcal{D}_{\nu} \epsilon H^{*} + \text{h.c.}$$

$$+ r_{Qd}^{(1)\mu\nu\rho} \cdot \overline{Q} \mathcal{D}_{(\mu} \sigma_{\nu)\rho} d \cdot H + r_{Qd}^{(2)\mu\nu\rho} \cdot \overline{Q} \sigma_{\nu)\rho} d \mathcal{D}_{(\mu} H + \text{h.c.}$$

$$+ r_{Qu}^{(1)\mu\nu\rho} \cdot \overline{Q} \mathcal{D}_{(\mu} \sigma_{\nu)\rho} u \cdot \epsilon H^{*} + r_{Qu}^{(2)\mu\nu\rho} \cdot \overline{Q} \sigma_{\nu)\rho} u \mathcal{D}_{(\mu} \epsilon H^{*} + \text{h.c.}$$

Higgs-Lepton

Higgs-
$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{Higgs-lepton}} = h_{LL}^{\mu} \cdot \overline{L} H \gamma_{\mu} H^{\dagger} L + p_{LL}^{\mu} \cdot \overline{L} \gamma_{\mu} L \cdot H^{\dagger} H + p_{ee}^{\mu} \cdot \overline{e} \gamma_{\mu} e \cdot H^{\dagger} H$$

$$+ q_{Le}^{(1)\mu} \cdot \overline{L} e \mathcal{D}_{\mu} H + q_{Le}^{(2)\nu} \cdot \overline{L} \sigma^{\mu\nu} e \mathcal{D}_{\nu} H + \text{h.c.}$$

$$+ r_{Le}^{(1)\mu\nu\rho} \cdot \overline{L} \mathcal{D}_{(\mu} \sigma_{\nu)\rho} e \cdot H + r_{Le}^{(2)\mu\nu\rho} \cdot \overline{L} \sigma_{\nu)\rho} e \mathcal{D}_{(\mu} H + \text{h.c.}$$

$$+ \varsigma^{\mu\nu} \cdot (H^{\dagger} L)^{T} \sigma_{\mu\nu} (H^{\dagger} L) + \text{h.c.}$$

Phenomenology of LV & CPTV dim 5 operators

Operators	Typical constraints	Source of constraints			
Unprotected operators					
$\widetilde{c}_{Q,1}^{\mu} \ \widetilde{c}_{Q,3}^{\mu} \ \widetilde{c}_{q,1}^{\mu} \ \widetilde{c}_{q,3}^{\mu} \ \widetilde{c}_{L,1}^{\mu} \ \widetilde{c}_{\psi}^{\mu}$	$\ll 10^{-31} \text{ GeV}^{-1}$	constraints on dim 3 operators			
Operators growing with e	Operators growing with energy (UV-enhanced operators)				
$C_q^{\mu\nu\rho} \ C_{q,5}^{\mu\nu\rho} \ C_l^{\mu\nu\rho} \ C_{l,5}^{\mu\nu\rho} \ C_{\rm EM}^{\mu\nu\rho}$	$\lesssim 10^{-33-34}~\mathrm{GeV}^{-1}$	high energy cosmic rays			
Soft LV interactions					
$c_{q,5}^{\mu} \ D_{q,5}^{\mu\nu\rho} \ D_{qg}^{\mu\nu\rho} \ D_{q}^{\mu\nu\rho} \ r_{q}^{\mu\nu\rho}$	$\lesssim 10^{-28-30} \ { m GeV^{-1}}$	nuclear spin precession			
$c_{q,5}^{\mu} \ D_{q,5}^{\mu\nu\rho} \ D_{qg,5}^{\mu\nu\rho} \ c_{e,5}^{\mu} \ D_{e,5}^{\mu\nu\rho}$	$\lesssim 10^{-25} e \mathrm{cm}$	atomic and nuclear EDMs			
$\Delta L = 2 \text{ interaction}$					
$\varsigma_{ u}^{\mu u}$	$\lesssim 10^{-23-24}~\mathrm{GeV^{-1}}$	data on neutrino oscillations			

Bolokhov, Pospelov 0703291.

STANDARD MODEL EXTENSION

V.A. Kostelecký, R. Bluhm, D. Colladay, R. Lehnert, R. Potting, N. Russell

In this case Lorentz symmetry is violated and hence CPT, but no quantum decoherence or unitarity loss. CPT well-defined operator, does not commute with Hamiltonian of the system.

String theory (non supersymmetric) \rightarrow Tachyonic instabilities, coupling with tensorial fields (gauge etc), $\rightarrow < A_{\mu} > \neq 0$, $< T_{\mu_1 \dots \mu_n} > \neq 0$,

Spontaneous breaking of Lorentz symmetry by (exotic) string vacua MODIFIED DIRAC EQUATION in SME: for spinor ψ reps. electrons, quarks etc. with charge q

$$(i\gamma^{\mu}D^{\mu} - M - a_{\mu}\gamma^{\mu}) - b_{\mu}\gamma_{5}\gamma^{\mu} - \frac{1}{2}H_{\mu\nu}\sigma^{\mu\nu} + ic_{\mu\nu}\gamma^{\mu}D^{\nu} + id_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$

where $D_{\mu} = \partial_{\mu} - A_{\mu}^a T^a - q A_{\mu}$.

effects

CPT & Lorentz violation: a_{μ} , b_{μ} . Lorentz violation only: $c_{\mu\nu}$, $d_{\mu\nu}$, $H_{\mu\nu}$.

NB1: : mass differences between particle/antiparticle not necessarily.

NB2: In general $a_{\mu}, b_{\mu}...$ might be energy dependent and NOT constants (c.f. Lorentz-Violation due to quantum space time foam, back reaction effects); ALSO in stochastic models of QG

 $\langle a_{\mu} , b_{\mu} \rangle = 0, \quad \langle a_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} b_{\nu} \rangle \neq 0, \text{ etc } \dots \text{ much more suppressed}$

Tests of Lorentz Violation in Neutral Kaons

(A. Kostelecky, hep-ph/9809572 (PRL))

Wave-function of neutral Kaon: Ψ (two-component K^0,\overline{K}^0)

Evolution within quantum mechanics but Lorentz & CPT Violation: $i\partial_t \Psi = \mathcal{H}\Psi$

 $\mathcal{H} \supset \text{CP-violation: } \epsilon_K \sim 10^{-3} \text{ & CPT-violation } \delta_K, \, \delta_K \sim (\mathcal{H}_{11} - \mathcal{H}_{22})/2\Delta\lambda, \, \Delta\lambda \text{ eigenvalue difference.}$

NB: $\mathcal{H}_{11} - \mathcal{H}_{22}$ is flavour diagonal. Parameter δ_K must be C violating but P,T preserving (c.f. strong interaction properties in neutral meson evolution):

Hence look for terms in SME that are flavour diagonal, violate C but preserve T, P. δ_K sensitive ONLY to $-a_{\mu}^q \overline{q} \gamma_{\mu} q$ terms in SME (q quark fields, meson composition: $M = q_1 \overline{q}_2$):

$$\delta_K \simeq i \sin \widehat{\phi} \exp(i\widehat{\phi}) \gamma \left(\Delta a_0 - \vec{\beta}_K \cdot \Delta \vec{a} \right) / \Delta m,$$

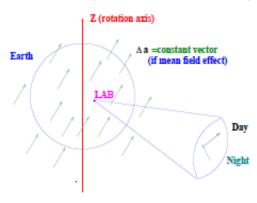
S=short-lived, L=long-lived, I=interference term, $\Delta m = m_L - m_S$, $\Delta \Gamma = \Gamma_S - \Gamma_L$,

$$\widehat{\phi}=\arctan(2\Delta m/\Delta\Gamma),\quad \Delta a_{\mu}\equiv a_{\mu}^{q_2}-a_{\mu}^{q_1}\text{, and }\beta_K^{\mu}=\gamma(1,\vec{\beta}_K)\text{ is the }$$

4-velocity of boosted kaon.

EXPERIMENTAL BOUNDS

Experimental bounds on a_{μ} : Look for sidereal variations of δ_K (day-night effects):



From KTeV: Δa_X , $\Delta a_Y < 9.2 \times 10^{-22}$ GeV.

From ϕ factories: (NB: additional polar (θ) and azimuthal (ϕ) angle dependence of δ_K):

$$\begin{split} \delta_K^\phi(|\vec{p}|,\theta,t) &= \frac{1}{\pi} \int_0^{2\pi} d\phi \delta_K(\vec{p},t) \simeq i \mathrm{sin} \widehat{\phi} \mathrm{exp}(i \widehat{\phi}) (\gamma/\Delta m) \left(\Delta a_0 + \beta_K \Delta a_Z \mathrm{cos} \chi \mathrm{cos} \theta + \beta_K \Delta a_X \mathrm{sin} \chi \mathrm{cos} \theta \mathrm{cos} (\Omega t) + \beta_K \Delta a_Y \mathrm{sin} \chi \mathrm{cos} \theta \mathrm{sin} (\Omega t) \right) \end{split}$$

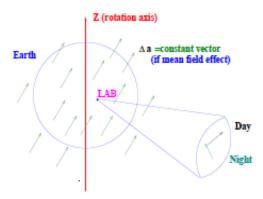
(Ω : Earth's sidereal frequency, χ : angle between Z-lab axis and Earth's axis.)

KLOE (at DA Φ NE) is sensitive to a_Z (actually limits on $\delta(\Delta a_Z)$ from forward-backward asymmetry $A_L=2{\rm Re}\epsilon_K-2{\rm Re}\delta_K$). For KLOE-2 at Da Φ NE-2): expected sensitivity $\Delta a_\mu=\mathcal{O}(10^{-18})$ GeV, not competitive with KTeV for $a_{X,Y}$ limits (

Similar tests for other mesons (B-mesons, etc....). Are QG LV effects Universal?

EXPERIMENTAL BOUNDS

Experimental bounds on a_{μ} : Look for sidereal variations of δ_K (day-night effects):



From KTeV: Δa_X , $\Delta a_Y < 9.2 \times 10^{-22}$ GeV.

From ϕ factories: (NB: additional polar (θ) and azimuthal (ϕ) angle dependence of δ_K):

$$\begin{split} \delta_K^\phi(|\vec{p}|,\theta,t) &= \frac{1}{\pi} \int_0^{2\pi} d\phi \delta_K(\vec{p},t) \simeq i \mathrm{sin} \widehat{\phi} \mathrm{exp}(i \widehat{\phi}) (\gamma/\Delta m) \left(\Delta a_0 + \beta_K \Delta a_Z \mathrm{cos} \chi \mathrm{cos} \theta + \beta_K \Delta a_X \mathrm{sin} \chi \mathrm{cos} \theta \mathrm{cos} (\Omega t) + \beta_K \Delta a_Y \mathrm{sin} \chi \mathrm{cos} \theta \mathrm{sin} (\Omega t) \right) \end{split}$$

(Ω : Earth's sidereal frequency, χ : angle between Z-lab axis and Earth's axis.)

KLOE (at DA
$$^{
m d}$$
 $A_L=2{
m Re}\epsilon_K$ $\Delta a_\mu={\cal O}(10^{\circ}$ Similar

$$A_L = 2 \operatorname{Re} \epsilon_K \Delta a_\mu = \mathcal{O}(10^{-17} \text{ GeV}.$$

Probing CPT Violation via Atomic Dipole moments

Bolokhov, Pospelov, Romalis 0609.153

Non-relativistic Hamiltonian

$$H = -\mu \mathbf{B} \cdot \frac{\mathbf{S}}{S} - d\mathbf{E} \cdot \frac{\mathbf{S}}{S} .$$

In the presence of Lorentz-violating background vector

$$\mathcal{L}_{\rm EDM} = \frac{-i}{2} d_{\rm CP} \overline{\psi} \sigma^{\mu\nu} F_{\mu\nu} \psi + d_{\rm CPT} \overline{\psi} \gamma_{\mu} \gamma_5 \psi F_{\mu\nu} n^{\nu}$$

$$d_{\rm CP} + d_{\rm CPT} = d$$
. Total atomic dipole moment

nil result of neutron EDM → constraint on combination

SME & Atomic Dipole moments

Bolokhov, Pospelov, Romalis 0609.153

$$\mathcal{L}_{3}=-\sum\bar{\psi}(a^{\mu}\gamma_{\mu}+b^{\mu}\gamma_{\mu}\gamma_{5})\psi,$$

 a_{μ} , b_{μ} LV background

+

$$\mathcal{L}_{5} = -\sum [c^{\mu}\overline{\psi}\gamma^{\lambda}F_{\lambda\mu}\psi + d^{\mu}\overline{\psi}\gamma^{\lambda}\gamma^{5}F_{\lambda\mu}\psi + f^{\mu}\overline{\psi}\gamma^{\lambda}\gamma^{5}\widetilde{F}_{\lambda\mu}\psi + g^{\mu}\overline{\psi}\gamma^{\lambda}\widetilde{F}_{\lambda\mu}\psi].$$

properties

Coefficient	Operator	\boldsymbol{C}	P	T
a^0	$\overline{\psi}\gamma_0\psi$	_	+	+
b^0	$\overline{\psi}\gamma_0\gamma_5\psi$	+	_	+
c^0	$F_{\lambda0}\overline{\psi}\gamma^{\lambda}\psi$	+	+	_
d^0	$F_{\lambda 0} \overline{\psi} \gamma^{\lambda} \gamma^{5} \psi$	_	_	_
f^0	$\widetilde{F}_{\lambda 0} \overline{\psi} \gamma^{\lambda} \gamma^{5} \psi$	_	+	+
g^0	$\widetilde{F}_{\lambda 0} \overline{\psi} \gamma^{\lambda} \psi$	+	_	+

CPT V @ low energies (1 GeV) in SU(2) x U(1)

Bolokhov, Pospelov, Romalis 0609.153

manipulating field identities

$$\mathcal{L}_{\text{CPT}} = \sum_{i=u,d,s} d_i^{\mu} \bar{q}_i \gamma^{\lambda} \gamma^5 F_{\lambda \mu} q_i.$$

light quarks (u, d, s) + photons, gluons

Disentangle CP-from CPT-odd operators

CP-odd terms require helicity flip \rightarrow dim 6 operators . suppressed by $1/\Lambda_{\rm CP}^2$ \rightarrow spin precession with magnetic field $[{\bf B} \times {\bf v}]$

CPT-odd terms do not require helicity flip → dim 5 operators in SU(2) X U(1) → no spin precession

$$\bar{q}_{R(L)}\gamma^{\lambda}\gamma^{5}F_{\lambda\mu}q_{R(L)}$$
 $\bar{q}_{L}\gamma^{\lambda}\gamma^{5}\tau^{a}F_{\lambda\mu}^{a}q_{L}$

Current bounds
$$\rightarrow$$
 $\Lambda_{CPT} \sim (10^{11} - 10^{12}) \text{ GeV}.$

EDM neutrons diamagnetic atoms (Hg, Xe,...) paramagnetic atoms (Tl, Cs,...)

EDM-induced CPT bounds

Bolokhov, Pospelov, Romalis 0609.153

Neutron

$$d_n \simeq 0.8d_d^0 - 0.4d_u^0 - 0.1d_s^0.$$

$$|d_n| < 3 \times 10^{-26} ecm$$
 (2002)

CPT-odd EDMs limited @ $O(10^{-25}ecm)$.

Diamagnetic atoms

$$d_{\rm Hg} \simeq -5 \times 10^{-4} (d_n + 0.1 d_p)$$

$$\simeq -5 \times 10^{-4} (0.74 d_d^0 - 0.32 d_u^0 - 0.11 d_s^0),$$

$$d_{\rm Hg}/d_n \sim -5 \times 10^{-4}$$
 \rightarrow if $d_n \neq 0 \rightarrow CPTV$

paramagnetic atoms

EDMs predicted to be extremely suppressed

higher-loop CPV corrections yields imprecise estimates

$$a^{\mu}, b^{\mu} \sim d^{\mu} (10^{-20} - 10^{-18}) \times \text{GeV}^2.$$

$$d_{\mu} \leq O(10^{-12}) \text{GeV}^{-1}$$

Tensor-LV-background induced EDMs

Bolokhov, Pospelov, Romalis 0609.153

$$D_{\mu
u
ho}
eq 0$$
 tensor background $ightarrow$ EFT terms $ightarrow$ $ar{e}F_{\mu
u}\gamma_{
ho}\gamma_{5}eD^{\mu
u
ho}$

$$H = -\mu \mathbf{B} \cdot \frac{\mathbf{S}}{S} - \mathcal{D}^{ij} E_i \cdot \frac{S_j}{S}. \qquad \mathcal{D}^{ik} = \mathcal{D}^{i[0k]} + \mathcal{D}^{k[0i]}.$$

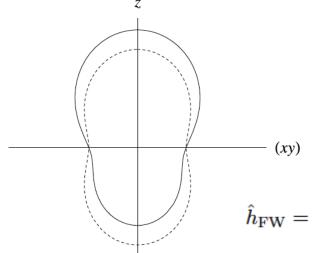
→ corection to spin precession frequency $\propto \mathcal{D}^{ij} E_i \, B_j$ → signature in EDM expt for paramagnetic atoms \approx O(1/10) CP-odd

Change orientation rel. Lab during the day

Effects of B_{μ} on dipole moments in Hydrogen-like atoms

Angular distribution for spontaneous radiation for the transition

$$2p_{1/2,1/2} \to 1s_{1/2,-1/2}$$



Corrections to electromagnetic dipole moments of bound electrons calculated in 1/c expansion (Foldy-Wouthysen (FW) method) to second order in $B^0 \rightarrow$ contributions to anapole moment of the atomic orbital \rightarrow asymmetry of angular distribution of radiation of, e.g. hydrogen atom

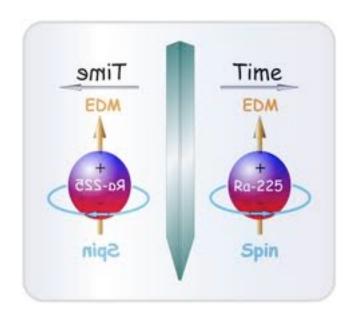
Kharlanov, Zhukovsky 0705.3306

$$\hat{h}_{\text{FW}} = \frac{\hat{p}^2}{2m_e} + \sigma b - \frac{b_0}{m_e c} \sigma \hat{p} + \frac{\hat{p}_j \sigma_l}{2m_e^2 c^2} (b_j \hat{p}_l - b_l \hat{p}_j) + \frac{b_0}{2m_e^3 c^3} \hat{p}^2 (\sigma \hat{p}).$$

electric & magnetic dipole corrections

$$\hat{\mu}_A = rac{eb_0}{m_e} \gamma^0 [\mathbf{\Sigma} r],$$
 $\hat{d}_A = -i \gamma_5 \hat{\mu}_A = -rac{ieb_0}{m_e} [\gamma r].$

TIME REVERSAL TESTS



INDEPENDENTLY OF CP VIOLATION

IN EPR ENTANGLED STATES

Testing Time Reversal (T) Symmetry independently of CP & CPT in entangled particle states: some ideas for antiprotonic Atoms

Bernabeu, Banuls (99) + di Domenico, Villanueva-Perez (13)

Direct evidence for T violation: experiment must show it **independently** of violations of CP & potentially CPT

opportunity in **entangled states** of mesons, such as neutral Kaons, B-mesons; **EPR entanglement crucial Observed in B-mesons (Ba-Bar Coll) Phys.Rev.Lett. 109 (2012) 21180**

Experimental Strategy:

Use initial (|i>) EPR correlated state for flavour tagging

$$\begin{split} |i\rangle &= \frac{1}{\sqrt{2}}\{|\mathbf{K}^0\rangle|\bar{\mathbf{K}}^0\rangle - |\bar{\mathbf{K}}^0\rangle|\mathbf{K}^0\rangle\} \\ &= \frac{1}{\sqrt{2}}\{|\mathbf{K}_+\rangle|\mathbf{K}_-\rangle - |\mathbf{K}_-\rangle|\mathbf{K}_+\rangle\} \ . \end{split}$$

construct observables by looking at appropriate T violating transitions interchanging in & out states, not simply being T-odd

infer flavour $(K^0 \text{ or } \bar{K}^0)$ by observation of flavour specific decay $(\pi^+\ell^-\bar{\nu} \text{ or } \pi^-\ell^+\nu)$ of the other meson

Reference		\mathcal{T} -conjugate	
Transition	Decay products	Transition	Decay products
$\mathrm{K}^0 ightarrow \mathrm{K}_+$	$(\ell^-,\pi\pi)$	$\mathrm{K}_{+} \to \mathrm{K}^{0}$	$(3\pi^0,\ell^+)$
${ m K^0} ightarrow { m K}$	$(\ell^-,3\pi^0)$	${ m K} ightarrow { m K}^0$	$(\pi\pi,\ell^+)$
$\bar{\mathrm{K}}^0 \to \mathrm{K}_+$	$(\ell^+,\pi\pi)$	$\mathrm{K}_+ \to \bar{\mathrm{K}}^0$	$(3\pi^0,\ell^-)$
$\bar{\rm K}^0 \to {\rm K}$	$(\ell^+, 3\pi^0)$	$\mathrm{K} \to \bar{\mathrm{K}}^0$	$(\pi\pi,\ell^-)$

Reference		\mathcal{CP} -conjugate	
Transition	Decay products	Transition	Decay products
$\mathrm{K}^0 ightarrow \mathrm{K}_+$	$(\ell^-,\pi\pi)$	$\bar{\mathrm{K}}^0 \to \mathrm{K}_+$	$(\ell^+,\pi\pi)$
${ m K^0} ightarrow { m K}$	$(\ell^-,3\pi^0)$	$\bar{\mathrm{K}}^0 \to \mathrm{K}$	$(\ell^+, 3\pi^0)$
$\bar{\mathrm{K}}^0 \to \mathrm{K}_+$	$(\ell^+,\pi\pi)$	${ m K^0} ightarrow { m K_+}$	$(\ell^-,\pi\pi)$
$\bar{\rm K}^0 \to {\rm K}$	$(\ell^+,3\pi^0)$	${ m K^0} ightarrow { m K}$	$(\ell^-,3\pi^0)$

Reference		CPT-conjugate		
Transition	Decay products	Transition	Decay products	
${ m K^0} ightarrow { m K_+}$	$(\ell^-,\pi\pi)$	$\mathrm{K}_{+} \to \bar{\mathrm{K}}^{0}$	$(3\pi^0,\ell^-)$	
${ m K^0} ightarrow { m K}$	$(\ell^-,3\pi^0)$	${ m K} ightarrow ar{ m K}^0$	$(\pi\pi,\ell^-)$	
$\bar{\mathrm{K}}^0 \to \mathrm{K}_+$	$(\ell^+,\pi\pi)$	$\mathrm{K}_{+} ightarrow \mathrm{K}^{0}$	$(3\pi^0,\ell^+)$	
$\bar{\mathrm{K}}^{0} \to \mathrm{K}_{-}$	$(\ell^+, 3\pi^0)$	$\mathrm{K} o \mathrm{K}^0$	$(\pi\pi,\ell^+)$	

T-violation Observables in entangled Kaons

$$R_1^{\text{exp}}(\Delta t) \equiv \frac{I(\ell^-, \pi \pi; \Delta t)}{I(3\pi^0, \ell^+; \Delta t)} = R_1(\Delta t) \times \frac{C(\ell^-, \pi \pi)}{C(3\pi^0, \ell^+)}$$

$$R_2^{\rm exp}(\Delta t) \equiv \frac{I(\ell^-,3\pi^0;\Delta t)}{I(\pi\pi,\ell^+;\Delta t)} = R_2(\Delta t) \times \frac{C(\ell^-,3\pi^0)}{C(\pi\pi,\ell^+)}$$

$$R_3^{\rm exp}(\Delta t) \equiv \frac{I(\ell^+, \pi \pi; \Delta t)}{I(3\pi^0, \ell^-; \Delta t)} = R_3(\Delta t) \times \frac{C(\ell^+, \pi \pi)}{C(3\pi^0, \ell^-)}$$

$$R_4^{\rm exp}(\Delta t) \equiv \frac{I(\ell^+,3\pi^0;\Delta t)}{I(\pi\pi,\ell^-;\Delta t)} = R_4(\Delta t) \times \frac{C(\ell^+,3\pi^0)}{C(\pi\pi,\ell^-)} \; , \label{eq:R4point}$$

$$\begin{array}{lcl} R_1(\Delta t) &=& P\left[\mathrm{K}^0(0) \to \mathrm{K}_+(\Delta t)\right] / P\left[\mathrm{K}_+(0) \to \mathrm{K}^0(\Delta t)\right] \\ R_2(\Delta t) &=& P\left[\mathrm{K}^0(0) \to \mathrm{K}_-(\Delta t)\right] / P\left[\mathrm{K}_-(0) \to \mathrm{K}^0(\Delta t)\right] \end{array}$$

$$R_3(\Delta t) = P\left[\bar{K}^0(0) \to K_+(\Delta t)\right] / P\left[K_+(0) \to \bar{K}^0(\Delta t)\right]$$

$$R_3(\Delta t) = P\left[\bar{K}^0(0) \to K_+(\Delta t)\right] / P\left[K_+(0) \to \bar{K}^0(\Delta t)\right]$$

$$R_4(\Delta t) = P\left[\bar{K}^0(0) \to K_-(\Delta t)\right] / P\left[K_-(0) \to \bar{K}^0(\Delta t)\right]$$

$$I(f_{\bar{X}}, f_{Y}; \Delta t) = \int_{0}^{\infty} I(f_{\bar{X}}, t_{1}; f_{Y}; t_{2}) dt_{1}$$

$$= \frac{1}{\Gamma_{S} + \Gamma_{L}} \left| \langle K_{X} \bar{K}_{X} | i \rangle \langle f_{\bar{X}} | T | \bar{K}_{X} \rangle \langle K_{Y} | K_{X}(\Delta t) \rangle \langle f_{Y} | T | K_{Y} \rangle \right|^{2}$$

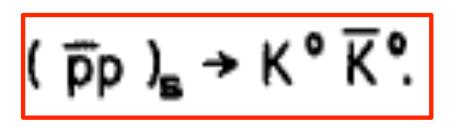
$$= C(f_{\bar{X}}, f_{Y}) \times P[K_{X}(0) \to K_{Y}(\Delta t)] , \qquad (31)$$

Banuls, Bernabeu (1999)

Bernabeu, di Domenico, Villanueva-Perez 2012

Relevance to antiprotonic atoms? preliminary ideas...

entangled (EPR correlated) Kaons can produced by **s-wave annihilation** in antiprotonic atom



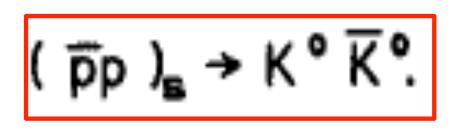
coherent decays of neutral kaons have been considered in the past as a way of measurement of CP ε'/ε

Bernabeu, Botella, Roldan (89)

In view of recent T Reversal Violation measurements exploiting the EPR nature of entangled Kaons we may use antiprotonic atoms to measure directly T violation, independently of CPT, via coherent decays of Kaons from the annihilation?

Relevance to antiprotonic atoms? preliminary ideas...

entangled (EPR correlated) Kaons can produced by **s-wave annihilation** in antiprotonic atom



coherent decays of neutral kaons have been considered in the past as a way of measurement of CP ε'/ε

Bernabeu, Botella, Roldan (89)

In view of recent T Reversal Violation measurements exploiting the EPR nature of entangled Kaons we may use antiprotonic atoms to measure directly T violation, independently of CPT, via coherent decays of Kaons from the annihilation?

But there are subtleties associated with Quantum Gravity & EPR

BEYOND LOCAL FIELD THEORY

CPT VIOLATION IN QUANTUM GRAVITY Beyond Local Field Theory

Conditions for the Validity of the CPT Theorem

CPT Invariance Theorem:

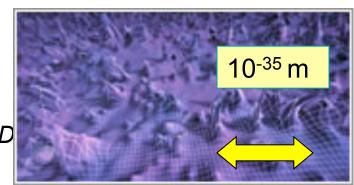
- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Hawking, Ellis, Hagelin, Nanopoulos Srednicki, Banks, Peskin, Strominger, Lopez, NEM, Barenboim...

(ii)-(iv) Independent reasons for violation

QUANTUM GRAVITY INDUCED DECOHERENCE EVOLUTION OF PURE QM STATES TO MIXED AT LOW ENERGIES

LOW ENERGY CPT OPERATOR NOT WELL DEFINED



CPT VIOLATION IN QUANTUM GRAVITY Beyond Local Field Theory

Conditions for the Validity of the CPT Theorem

CPT Invariance Theorem:

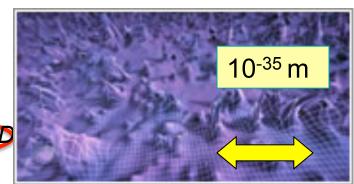
- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Hawking, Ellis, Hagelin, Nanopoulos Srednicki, Banks, Peskin, Strominger, Lopez, NEM, Barenboim...

(ii)-(iv) Independent reasons for violation

QUANTUM GRAVITY INDUCED DECOHERENCE EVOLUTION OF PURE QM STATES TO MIXED AT LOW ENERGIES

LOW ENERGY CPT OPERATOR NOT WELL DEFINED



Decoherence implies that asymptotic density matrix of low-energy matter:

$$\rho = \text{Tr}|\psi\rangle\langle\psi|$$

$$\rho_{\text{out}} = \$\rho_{\text{in}}$$

$$\$ \neq S S^{\dagger}$$

$$S = e^{i \int H dt}$$

May induce quantum decoherence of propagating matter and intrinsic CPT Violation

$$\Theta
ho_{
m in} = \overline{
ho}_{
m out}$$

can show that

exists!

INCOMPATIBLE WITH DECOHERENCE!

Hence Θ ill-defined at low-energies in QG foam models

Decoherence implies
that
asymptotic density
matrix of
low-energy matter:

May induce quantum decoherence of propagating matter and intrinsic CPT Violation in the sense that the CPT operator ⊙ is not well-defined → beyond Local Effective Field theory

$$\rho = \text{Tr}|\psi\rangle\langle\psi|$$

$$\begin{vmatrix}
|i\rangle = \mathcal{N} \left[|M_0(\vec{k})\rangle |\overline{M}_0(-\vec{k})\rangle - |\overline{M}_0(\vec{k})\rangle |M_0(-\vec{k})\rangle \\
+ \omega \left(|M_0(\vec{k})\rangle |\overline{M}_0(-\vec{k})\rangle + |\overline{M}_0(\vec{k})\rangle |M_0(-\vec{k})\rangle\right)
\end{vmatrix} \omega = |\omega| e^{i\vartheta}$$

May contaminate initially antisymmetric neutral meson M state by symmetric parts (ω -effect)

Bernabeu, NEM, Papavassiliou,...

Hence Θ ill-defined at low-energies in QG foam models -> may affect EPR

Decoherence implies
that
asymptotic density
matrix of
low-energy matter:

May induce quantum decoherence of propagating matter and intrinsic CPT Violation in the sense that the CPT operator ⊙ is not well-defined → beyond Local Effective Field theory

$$\rho = \text{Tr}|\psi\rangle\langle\psi|$$

May contaminate initially autisymmetric neutral meson M state by symmetric parts (w-effect)

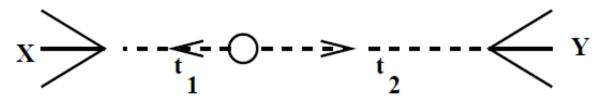
Bernabeu, NEM, Papavassiliou,...

Hence Θ ill-defined at low-energies in QG foam models -> may affect EPR

ω-effect observables/current bounds

ϕ Decays and the ω Effect

Consider the ϕ decay amplitude: final state X at t_1 and Y at time t_2 (t=0 at the moment of ϕ decay)



Amplitudes:

$$A(X,Y) = \langle X|K_S\rangle\langle Y|K_S\rangle\mathcal{N} (A_1 + A_2)$$

with

$$A_1 = e^{-i(\lambda_L + \lambda_S)t/2} [\eta_X e^{-i\Delta\lambda\Delta t/2} - \eta_Y e^{i\Delta\lambda\Delta t/2}]$$

$$A_2 = \omega [e^{-i\lambda_S t} - \eta_X \eta_Y e^{-i\lambda_L t}]$$

the CPT-allowed and CPT-violating parameters respectively, and $\eta_X = \langle X|K_L\rangle/\langle X|K_S\rangle$ and $\eta_Y = \langle Y|K_L\rangle/\langle Y|K_S\rangle$.

The "intensity" $I(\Delta t)$: $(\Delta t = t_1 - t_2)$ is an observable

$$I(\Delta t) \equiv \frac{1}{2} \int_{|\Delta t|}^{\infty} dt \, |A(X,Y)|^2$$

Bernabeu, NEM, Papavassiliou,...

ω -Effect & Intensities

$$I(\Delta t) = \frac{1}{2} \int_{|\Delta t|}^{\infty} dt \, |A(\pi^{+}\pi^{-}, \pi^{+}\pi^{-})|^{2} = |\langle \pi^{+}\pi^{-}|K_{S} \rangle|^{4} |\mathcal{N}|^{2} |\eta_{+-}|^{2} \Big[I_{1} + I_{2} + I_{12} \Big]$$

$$I_{1}(\Delta t) = \frac{e^{-\Gamma_{S}\Delta t} + e^{-\Gamma_{L}\Delta t} - 2e^{-(\Gamma_{S}+\Gamma_{L})\Delta t/2} \cos(\Delta M \Delta t)}{\Gamma_{L} + \Gamma_{S}}$$

$$I_{2}(\Delta t) = \frac{|\omega|^{2}}{|\eta_{+-}|^{2}} \frac{e^{-\Gamma_{S}\Delta t}}{2\Gamma_{S}}$$

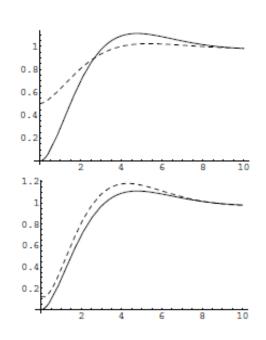
$$I_{12}(\Delta t) = -\frac{4}{4(\Delta M)^{2} + (3\Gamma_{S} + \Gamma_{L})^{2}} \frac{|\omega|}{|\eta_{+-}|} \times$$

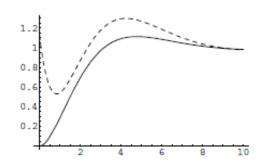
$$\Big[2\Delta M \Big(e^{-\Gamma_{S}\Delta t} \sin(\phi_{+-} - \Omega) - e^{-(\Gamma_{S}+\Gamma_{L})\Delta t/2} \sin(\phi_{+-} - \Omega + \Delta M \Delta t) \Big) - (3\Gamma_{S} + \Gamma_{L}) \Big(e^{-\Gamma_{S}\Delta t} \cos(\phi_{+-} - \Omega) - e^{-(\Gamma_{S}+\Gamma_{L})\Delta t/2} \cos(\phi_{+-} - \Omega + \Delta M \Delta t) \Big) \Big]$$

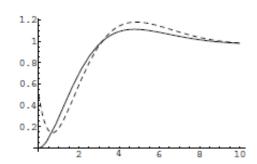
$$\Delta M = M_S - M_L \text{ and } \eta_{+-} = |\eta_{+-}| e^{i\phi} + -.$$

NB: sensitivities up to $|\omega| \sim 10^{-6}$ in ϕ factories, due to enhancement by $|\eta_{+-}| \sim 10^{-3}$ factor.

ω-Effect & Intensities



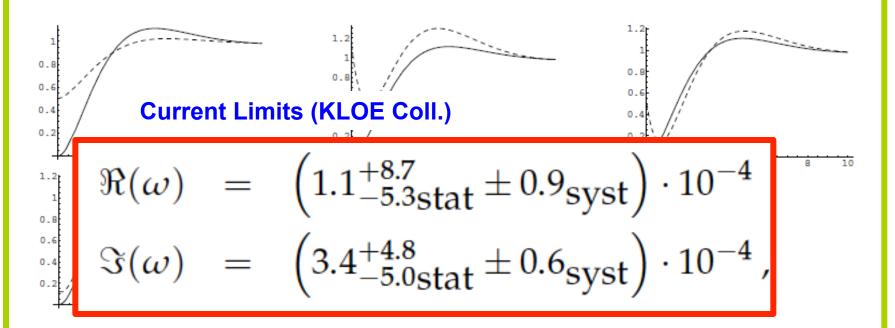




Characteristic cases of the intensity $I(\Delta t)$, with $|\omega|=0$ (solid line) vs $I(\Delta t)$ (dashed line) with (from top left to right): (i) $|\omega|=|\eta_{+-}|$, $\Omega=\phi_{+-}-0.16\pi$, (ii) $|\omega|=|\eta_{+-}|$, $\Omega=\phi_{+-}+0.95\pi$, (iii) $|\omega|=0.5|\eta_{+-}|$, $\Omega=\phi_{+-}+0.16\pi$, (iv) $|\omega|=1.5|\eta_{+-}|$, $\Omega=\phi_{+-}$. Δt is measured in units of τ_S (the mean life-time of K_S) and $I(\Delta t)$ in units of $|C|^2|\eta_{+-}|^2|\langle\pi^+\pi^-|K_S\rangle|^4\tau_S$.

Bernabeu, NEM, Papavassiliou,...

ω-Effect & Intensities



Characteristic cases of the intensity $I(\Delta t)$, with $|\omega|=0$ (solid line) vs $I(\Delta t)$ (dashed line) with (from top left to right): (i) $|\omega|=|\eta_{+-}|$, $\Omega=\phi_{+-}-0.16\pi$, (ii) $|\omega|=|\eta_{+-}|$, $\Omega=\phi_{+-}+0.95\pi$, (iii) $|\omega|=0.5|\eta_{+-}|$, $\Omega=\phi_{+-}+0.16\pi$, (iv) $|\omega|=1.5|\eta_{+-}|$, $\Omega=\phi_{+-}$. Δt is measured in units of τ_S (the mean life-time of K_S) and $I(\Delta t)$ in units of $|C|^2|\eta_{+-}|^2|\langle\pi^+\pi^-|K_S\rangle|^4\tau_S$.

Perspectives for KLOE-2 : Re(ω), Im(ω) \rightarrow 2 x 10⁻⁵

Bernabeu, NEM, Papavassiliou,...

CPTV & EPR-correlations modification

(Bernabeu, NM and Papavassiliou, hep-ph/0310180 (PRL 92))

If CPT is broken via Quantum Gravity (QG) decoherence effects on $\$ \neq SS^{\dagger}$, then: CPT operator Θ is ILL defined \Rightarrow Antiparticle Hilbert Space INDEPENDENT OF particle Hilbert space.

Neutral mesons K^0 and \overline{K}^0 SHOULD NO LONGER be treated as IDENTICAL PARTICLES. \Rightarrow initial Entangled State in ϕ (B) factories |i> (in terms of mass eigenstates):

$$|i\rangle = \mathcal{N}\left[\left(|K_S(\vec{k}), K_L(-\vec{k})\rangle - |K_L(\vec{k}), K_S(-\vec{k})\rangle\right) + \omega\left(|K_S(\vec{k}), K_S(-\vec{k})\rangle - |K_L(\vec{k}), K_L(-\vec{k})\rangle\right] \qquad \omega = |\omega|e^{i\Omega}$$

NB! K_SK_S or K_L-K_L combinations, due to CPTV ω , important in decay channels. There is contamination of C(odd) state with C(even). Complex ω controls the amount of contamination by the "wrong" (C(even)) symmetry state.

Experimental Tests of ω -Effect in ϕ , B factories... in B-factories: ω -effect \rightarrow demise of flavour tagging (Alvarez et al. (PLB607))

NB1: Disentangle ω C-even background effects ($e^+e^- \Rightarrow 2\gamma \Rightarrow K^0\overline{K}^0$): terms of the type K_SK_S (which dominate over K_LK_L) coming from the ϕ -resonance as a result of ω -CPTV can be distinguished from those coming from the C=+ background because they interfere differently with the regular C=- resonant contribution with $\omega=0$.

NB2: Also disentangle ω from non-unitary evolution ($\alpha = \gamma$...) effects (different structures) (Bernabéu, NM, Papavassiliou, Waldron NP B744:180-206,2006)

Decoherence implies
that
asymptotic density
matrix of
low-energy matter:

May induce **quantum decoherence** of propagating matter and

intrinsic CPT Violation

in the sense that the CFT

operator **Θ** is **not well-defined** → **beyond Local Effective Field theory**

$$\rho = \text{Tr}|\psi\rangle\langle\psi|$$

May contaminate initially antisymmetric neutral meson M state by symmetric parts (ω -effect)

Bernabeu, NEM, Papavassiliou,...

Hence Θ ill-defined at low-energies in QG foam models → may affect EPR

Other beyond Local EFT Effects-QG-induced ecoherence

Quantum Gravity (QG) may induce decoherence and oscillations $K^0 \to \overline{K}^0 \Rightarrow$ could use Lindblad-type approach (one example) (Ellis, Hagelin, Nanopoulos, Srednicki, Lopez, NM):

$$\partial_t \rho = i[\rho, H] + \delta H \rho$$

where

$$H_{\alpha\beta} = \begin{pmatrix} -\Gamma & -\frac{1}{2}\delta\Gamma & -\text{Im}\Gamma_{12} & -\text{Re}\Gamma_{12} \\ -\frac{1}{2}\delta\Gamma & -\Gamma & -2\text{Re}M_{12} & -2\text{Im}M_{12} \\ -\text{Im}\Gamma_{12} & 2\text{Re}M_{12} & -\Gamma & -\delta M \\ -\text{Re}\Gamma_{12} & -2\text{Im}M_{12} & \delta M & -\Gamma \end{pmatrix}$$

and

positivity of ρ requires: $\alpha, \gamma > 0$, $\alpha \gamma > \beta^2$.

 α, β, γ violate CPT (Wald: decoherence) & CP: $CP = \sigma_3 \cos \theta + \sigma_2 \sin \theta$, $[\delta H_{\alpha\beta}, CP] \neq 0$

Neutral Kaon Entangled States

Complete Positivity Different parametrization of Decoherence matrix (Benatti-Floreanini)

(in
$$\alpha, \beta, \gamma$$
 framework: $\alpha = \gamma, \beta = 0$)

FROM DADNE:

KLOE preliminary (A. Di Domenico Home Page, (c.f. Experimental Talk (M. Testa)).) http://www.roma1.infn.it/people/didomenico/roadmap/kaoninterferometry.html

$$\begin{split} \alpha &= \left(-10^{+41}_{-31 \rm stat} \pm 9_{\rm syst}\right) \times 10^{-17} \ {\rm GeV} \ , \\ \beta &= \left(3.7^{+6.9}_{-9.2 \rm stat} \pm 1.8_{\rm syst}\right) \times 10^{-19} \ {\rm GeV} \ , \\ \gamma &= \left(-0.4^{+5.8}_{-5.1 \rm stat} \pm 1.2_{\rm syst}\right) \times 10^{-21} \ {\rm GeV} \ , \end{split}$$

NB: For entangled states, Complete Positivity requires (Benatti, FLoreanini) $\alpha = \gamma$, $\beta = 0$, one independent parameter (which has the greatest experimental sensitivity by the way) γ !

with
$$L=2.5~fb^{-1}$$
: $\gamma \rightarrow \pm 2.2_{stat} \times 10^{-21}~{\rm GeV}$,

$$\gamma \rightarrow \pm 0.2. \times 10^{-21} \text{ GeV}$$

(present best measurement $\gamma = \left(1.3^{+2.8}_{-2.4 \mathrm{stat}} \pm 0.4_{\mathrm{syst}}\right) \cdot 10^{-21} \, \mathrm{GeV}$ (KLOE)

Part II Microscopic Origin of SME coefficients?

Several "Geometry-induced" examples:

Non-Commutative Geometries
Axisymmetric Background
Geometries of the Early Universe
Torsionful Geometries (including strings...)

Early Universe T-dependent effects: large @ high T, low values today for coefficients of SME

STANDARD MODEL EXTENSION

V.A. Kostelecký, R. Bluhm, D. Colladay, R. Lehnert, R. Potting, N. Russell

In this case Lorentz symmetry is violated and hence CPT, but no quantum decoherence or unitarity loss. CPT well-defined operator, does not commute with Hamiltonian of the system.

String theory (non supersymmetric) \to Tachyonic instabilities, coupling with tensorial fields (gauge etc), \to < $A_{\mu}>\neq 0$, < $T_{\mu_1...\mu_n}>\neq 0$,

Spontaneous breaking of Lorentz symmetry by (exotic) string vacua MODIFIED DIRAC EQUATION in SME: for spinor ψ reps. electrons, quarks etc. with charge q

$$(i\gamma^{\mu}D^{\mu} - M - a_{\mu}\gamma^{\mu} - b_{\mu}\gamma_{5}\gamma^{\mu} - \frac{1}{2}H_{\mu\nu}\sigma^{\mu\nu} + ic_{\mu\nu}\gamma^{\mu}D^{\nu} + id_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$

where $D_{\mu} = \partial_{\mu} - A_{\mu}^a T^a - q A_{\mu}$.

effects

CPT & Lorentz violation: a_{μ} , b_{μ} . Lorentz violation only: $c_{\mu\nu}$, $d_{\mu\nu}$, $H_{\mu\nu}$.

NB1: : mass differences between particle/antiparticle not necessarily.

NB2: In general $a_{\mu}, b_{\mu}...$ might be energy dependent and NOT constants (c.f. Lorentz-Violation due to quantum space time foam, back reaction effects); ALSO in stochastic models of QG

 $\langle a_{\mu} , b_{\mu} \rangle = 0, \quad \langle a_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} b_{\nu} \rangle \neq 0, \text{ etc } \dots \text{ much more suppressed}$

Microscopic Origin of SME coefficients?

```
Several "Geometry-induced" examples:

Non-Commutative Geometries

Axisymmetric Background

Geometries of the Early Universe

Torsionful Geometries (including strings...)

Early Universe T-dependent effects:

large @ high T, low values today

for coefficients of SME
```

STANDARD MODEL EXTENSION

V.A. Kostelecký, R. Bluhm, D. Colladay, R. Lehnert, R. Potting, N. Russell

In this case Lorentz symmetry is violated and hence CPT, but no quantum decoherence or unitarity loss. CPT well-defined operator, does not commute with Hamiltonian of the system.

String theory (non supersymmetric) \to Tachyonic instabilities, coupling with tensorial fields (gauge etc), $\to < A_{\mu} > \neq 0$, $< T_{\mu_1 \dots \mu_n} > \neq 0$,

Spontaneous breaking of Lorentz symmetry by (exotic) string vacua MODIFIED DIRAC EQUATION in SME: for spinor ψ reps. electrons, quarks etc. with charge q

$$(i\gamma^{\mu}D^{\mu} - M - a_{\mu}\gamma^{\mu} - b_{\mu}\gamma_{5}\gamma^{\mu} - \frac{1}{2}H_{\mu\nu}\sigma^{\mu\nu} + ic_{\mu\nu}\gamma^{\mu}D^{\nu}) + id_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$

where $D_{\mu} = \partial_{\mu} - A_{\mu}^{a} T^{a} - q A_{\mu}$.

effects

CPT & Lorentz violation: a_{μ} , b_{μ} . Lorentz violation only: $c_{\mu\nu}$, $d_{\mu\nu}$, $H_{\mu\nu}$.

NB1: : mass differences between particle/antiparticle not necessarily.

NB2: In general $a_{\mu}, b_{\mu}...$ might be energy dependent and NOT constants (c.f. Lorentz-Violation due to quantum space time foam, back reaction effects); ALSO in stochastic models of QG

 $\langle a_{\mu} , b_{\mu} \rangle = 0, \quad \langle a_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} b_{\nu} \rangle \neq 0, \text{ etc } \dots \text{ much more suppressed}$

Non-commutative effective field theories

$$[x^{\mu}, x^{\nu}] = i\theta^{\mu\nu}$$

Moyal \star products

$$f \star g(x) \equiv \exp(\frac{1}{2}i\theta^{\mu\nu}\partial_{x^{\mu}}\partial_{y^{\nu}})f(x)g(y)\big|_{x=y}$$

$$\theta_{\mu\nu}\theta^{\mu\nu} > 0$$

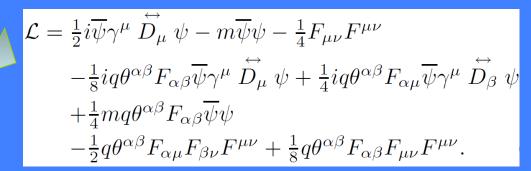
$$\widehat{A}_{\mu} = A_{\mu} - \frac{1}{2} \theta^{\alpha \beta} A_{\alpha} (\partial_{\beta} A_{\mu} + F_{\beta \mu}),$$

$$\widehat{\psi} = \psi - \frac{1}{2} \theta^{\alpha \beta} A_{\alpha} \partial_{\beta} \psi.$$

$$D_{\mu}\psi = \partial_{\mu}\psi - iqA_{\mu}\psi$$

$$\mathcal{L} = \frac{1}{2}i\overline{\widehat{\psi}} \star \gamma^{\mu} \stackrel{\leftrightarrow}{\widehat{D}}_{\mu} \widehat{\psi} - m\overline{\widehat{\psi}} \star \widehat{\psi} - \frac{1}{4q^2} \widehat{F}_{\mu\nu} \star \widehat{F}^{\mu\nu}$$

$$\widehat{D}_{\mu}\widehat{\psi} = \partial_{\mu}\widehat{\psi} - i\widehat{A}_{\mu}\star\widehat{\psi} \qquad \widehat{f}\star \stackrel{\leftrightarrow}{\widehat{D}_{\mu}}\widehat{g} \equiv \widehat{f}\star\widehat{D}_{\mu}\widehat{g} - \widehat{D}_{\mu}\widehat{f}\star\widehat{g}$$



CPT invariant SME type field theory (Q.E.D.) - only even number of indices appear in effective non-renormalisable terms. (Carroll et al. hep-th/0105082)

Non-commutative effective field theories

$$[x^{\mu}, x^{\nu}] = i\theta^{\mu\nu}$$

Moyal \star products

$$f \star g(x) \equiv \exp(\frac{1}{2}i\theta^{\mu\nu}\partial_{x^{\mu}}\partial_{y^{\nu}})f(x)g(y)\big|_{x=y}$$

$$\theta_{\mu\nu}\theta^{\mu\nu} > 0$$

$$\widehat{A}_{\mu} = A_{\mu} - \frac{1}{2} \theta^{\alpha \beta} A_{\alpha} (\partial_{\beta} A_{\mu} + F_{\beta \mu}),$$

$$\widehat{\psi} = \psi - \frac{1}{2} \theta^{\alpha \beta} A_{\alpha} \partial_{\beta} \psi.$$

$$D_{\mu}\psi = \partial_{\mu}\psi - iqA_{\mu}\psi$$

$$\mathcal{L} = \frac{1}{2}i\overline{\widehat{\psi}} \star \gamma^{\mu} \stackrel{\leftrightarrow}{\widehat{D}}_{\mu} \widehat{\psi} - m\overline{\widehat{\psi}} \star \widehat{\psi} - \frac{1}{4q^2} \widehat{F}_{\mu\nu} \star \widehat{F}^{\mu\nu}$$

$$\widehat{D}_{\mu}\widehat{\psi} = \partial_{\mu}\widehat{\psi} - i\widehat{A}_{\mu} \star \widehat{\psi} \qquad \widehat{f} \star \stackrel{\leftrightarrow}{\widehat{D}_{\mu}} \widehat{g} \equiv \widehat{f} \star \widehat{D}_{\mu}\widehat{g} - \widehat{D}_{\mu}\widehat{f} \star \widehat{g}$$

$$\mathcal{L} = \frac{1}{2}i\overline{\psi}\gamma^{\mu} \stackrel{\leftrightarrow}{D_{\mu}} \psi - m\overline{\psi}\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}
- \frac{1}{8}iq\theta^{\alpha\beta}F_{\alpha\beta}\overline{\psi}\gamma^{\mu} \stackrel{\leftrightarrow}{D_{\mu}} \psi + \frac{1}{4}iq\theta^{\alpha\beta}F_{\alpha\mu}\overline{\psi}\gamma^{\mu} \stackrel{\leftrightarrow}{D_{\beta}} \psi
+ \frac{1}{4}mq\theta^{\alpha\beta}F_{\alpha\beta}\overline{\psi}\psi
- \frac{1}{2}q\theta^{\alpha\beta}F_{\alpha\mu}F_{\beta\nu}F^{\mu\nu} + \frac{1}{8}q\theta^{\alpha\beta}F_{\alpha\beta}F_{\mu\nu}F^{\mu\nu}.$$

CPT invariant SME type field theory (Q.E.D.) - only even number of indices appear in effective non-renormalisable terms. (Carroll et al. hep-th/0105082)

STANDARD MODEL EXTENSION

V.A. Kostelecký, R. Bluhm, D. Colladay, R. Lehnert, R. Potting, N. Russell

In this case Lorentz symmetry is violated and hence CPT, but no quantum decoherence or unitarity loss. CPT well-defined operator, does not commute with Hamiltonian of the system.

String theory (non supersymmetric) \to Tachyonic instabilities, coupling with tensorial fields (gauge etc), $\to < A_{\mu} > \neq 0$, $< T_{\mu_1 \dots \mu_n} > \neq 0$,

Spontaneous breaking of Lorentz symmetry by (exotic) string vacua MODIFIED DIRAC EQUATION in SME: for spinor ψ reps. electrons, quarks etc. with charge q

$$(i\gamma^{\mu}D^{\mu} - M - a_{\mu}\gamma^{\mu} - b_{\mu}\gamma_{5}\gamma^{\mu} - \frac{1}{2}H_{\mu\nu}\sigma^{\mu\nu} + ic_{\mu\nu}\gamma^{\mu}D^{\nu}) + id_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$

where $D_{\mu} = \partial_{\mu} - A_{\mu}^{a} T^{a} - q A_{\mu}$.

effects

CPT & Lorentz violation: a_{μ} , b_{μ} . Lorentz violation only: $c_{\mu\nu}$, $d_{\mu\nu}$, $H_{\mu\nu}$.

NB1: : mass differences between particle/antiparticle not necessarily.

NB2: In general $a_{\mu}, b_{\mu}...$ might be energy dependent and NOT constants (c.f. Lorentz-Violation due to quantum space time foam, back reaction effects); ALSO in stochastic models of QG

 $\langle a_{\mu} , b_{\mu} \rangle = 0, \quad \langle a_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} b_{\nu} \rangle \neq 0, \text{ etc } \dots \text{ much more suppressed}$

Microscopic Origin of SME coefficients?

```
Several "Geometry-induced" examples:

Non-Commutative Geometries

Axisymmetric Background

Geometries of the Early Universe

Torsionful Geometries (including strings...)

Early Universe T-dependent effects:

Large @ high T, Low values today

for coefficients of SME
```

Microscopic Origin of SME coefficients?

```
Several "Geometry-induced" examples:

Non-Commutative Geometries

Axisymmetric Background

Geometries of the Early Universe

Torsionful Geometries (including strings...)

Early Universe T-dependent effects:

large @ high T, low values today

for coefficients of SME
```

STANDARD MODEL EXTENSION

V.A. Kostelecký, R. Bluhm, D. Colladay, R. Lehnert, R. Potting, N. Russell

In this case Lorentz symmetry is violated and hence CPT, but no quantum decoherence or unitarity loss. CPT well-defined operator, does not commute with Hamiltonian of the system.

String theory (non supersymmetric) \to Tachyonic instabilities, coupling with tensorial fields (gauge etc), $\to < A_{\mu} > \neq 0$, $< T_{\mu_1 \dots \mu_n} > \neq 0$,

Spontaneous breaking of Lorentz symmetry by (exotic) string vacua MODIFIED DIRAC EQUATION in SME: for spinor ψ reps. electrons, quarks etc. with charge q

$$(i\gamma^{\mu}D^{\mu} - M - a_{\mu}\gamma^{\mu}) - b_{\mu}\gamma_{5}\gamma^{\mu} - \frac{1}{2}H_{\mu\nu}\sigma^{\mu\nu} + ic_{\mu\nu}\gamma^{\mu}D^{\nu} + id_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$

where $D_{\mu} = \partial_{\mu} - A_{\mu}^a T^a - q A_{\mu}$.

effects

CPT & Lorentz violation: a_{μ} , b_{μ} . Lorentz violation only: $c_{\mu\nu}$, $d_{\mu\nu}$, $H_{\mu\nu}$.

NB1: : mass differences between particle/antiparticle not necessarily.

NB2: In general $a_{\mu}, b_{\mu}...$ might be energy dependent and NOT constants (c.f. Lorentz-Violation due to quantum space time foam, back reaction effects); ALSO in stochastic models of QG

 $\langle a_{\mu} , b_{\mu} \rangle = 0, \quad \langle a_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} b_{\nu} \rangle \neq 0, \text{ etc } \dots \text{ much more suppressed}$

STANDARD MODEL EXTENSION

V.A. Kostelecký, R. Bluhm, D. Colladay, R. Lehnert, R. Potting, N. Russell

In this case Lorentz symmetry is violated and hence CPT, but no quantum decoherence or unitarity loss. CPT well-defined operator, does not commute with Hamiltonian of the system.

String theory (non supersymmetric) \to Tachyonic instabilities, coupling with tensorial fields (gauge etc), $\to < A_{\mu} > \neq 0$, $< T_{\mu_1 \dots \mu_n} > \neq 0$,

Spontaneous breaking of Lorentz symmetry by (exotic) string vacua MODIFIED DIRAC EQUATION in SME: for spinor ψ reps. electrons, quarks etc. with charge q

$$(i\gamma^{\mu}D^{\mu} - M - a_{\mu}\gamma^{\mu}) - b_{\mu}\gamma_{5}\gamma^{\mu} - \frac{1}{2}H_{\mu\nu}\sigma^{\mu\nu} + ic_{\mu\nu}\gamma^{\mu}D^{\nu} + id_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$

where $D_{\mu} = \partial_{\mu} - A_{\mu}^a T^a - q A_{\mu}$.

effects

CPT & Lorentz violation: a_{μ} , b_{μ} . Lorentz violation only: $c_{\mu\nu}$, $d_{\mu\nu}$, $H_{\mu\nu}$.

NB1: : mass differences between particle/antiparticle not necessarily.

NB2: In general $a_{\mu}, b_{\mu}...$ might be energy dependent and NOT constants (c.f. Lorentz-Violation due to quantum space time foam, back reaction effects); ALSO in stochastic models of QG

 $\langle a_{\mu} , b_{\mu} \rangle = 0, \quad \langle a_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} b_{\nu} \rangle \neq 0, \text{ etc } \dots \text{ much more suppressed}$

Gravitational Baryogenesis

Davoudiasl, Kitano, Kribs, Murayama, Steinhardt

Quantum Gravity (or something else (e.g. SUGRA)) may lead at low-energies (below Plnack scale or a scale M*) to a term in the effective Lagrangian (in curved back space-time backgrounds):

$$J^{\mu} = \overline{\psi}_i \, \gamma^{\mu} \, \psi_i \qquad \qquad \frac{1}{M_*^2} \int d^4 x \sqrt{-g} (\partial_{\mu} \mathcal{R}) J^{\mu}$$

Standard Model extension type

Term Violates CP but is CPT conserving in vacuo It Violates CPT in the background space-time of an expanding FRW Universe

$$\dot{\mathcal{R}} = -(1-3w)\frac{\dot{\rho}}{M_P^2} = \sqrt{3} (1-3w)(1+w) \frac{\rho^{3/2}}{M_P^3}$$

Energy differences between particle vs antipartic $\pm \mathcal{R}/M_{\star}^2$

Dynamical CPTV

Baryon Asymmetry
$$\frac{n_B}{s} pprox \frac{\dot{\mathcal{R}}}{M_*^2 T} \Bigg|_{T_D}$$
 Calculate for various w in some scenario

$$\left. \frac{n_B}{s} \approx \frac{\dot{\mathcal{R}}}{M_*^2 T} \right|_{T}$$

some scenarios

$$\textcircled{0}$$
 T < T_D ,
T_D = Decoupling T

STANDARD MODEL EXTENSION

V.A. Kostelecký, R. Bluhm, D. Colladay, R. Lehnert, R. Potting, N. Russell

In this case Lorentz symmetry is violated and hence CPT, but no quantum decoherence or unitarity loss. CPT well-defined operator, does not commute with Hamiltonian of the system.

String theory (non supersymmetric) \to Tachyonic instabilities, coupling with tensorial fields (gauge etc), $\to < A_{\mu} > \neq 0$, $< T_{\mu_1 \dots \mu_n} > \neq 0$,

Spontaneous breaking of Lorentz symmetry by (exotic) string vacua MODIFIED DIRAC EQUATION in SME: for spinor ψ reps. electrons, quarks etc. with charge q

$$(i\gamma^{\mu}D^{\mu} - M - a_{\mu}\gamma^{\mu} - b_{\mu}\gamma_{5}\gamma^{\mu}) - \frac{1}{2}H_{\mu\nu}\sigma^{\mu\nu} + ic_{\mu\nu}\gamma^{\mu}D^{\nu} + id_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$

where $D_{\mu} = \partial_{\mu} - A^a_{\mu} T^a - q A_{\mu}$.

effects

CPT & Lorentz violation: a_{μ} , b_{μ} . Lorentz violation only: $c_{\mu\nu}$, $d_{\mu\nu}$, $H_{\mu\nu}$.

NB1: : mass differences between particle/antiparticle not necessarily.

NB2: In general $a_{\mu}, b_{\mu}...$ might be energy dependent and NOT constants (c.f. Lorentz-Violation due to quantum space time foam, back reaction effects); ALSO in stochastic models of QG

 $\langle a_{\mu} , b_{\mu} \rangle = 0, \quad \langle a_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} a_{\nu} \rangle \neq 0, \ \langle b_{\mu} b_{\nu} \rangle \neq 0, \text{ etc } \dots \text{ much more suppressed}$

CPTV Effects of different Space-Time-Curvature/Spin couplings between neutrinos/ antineutrinos

B. Mukhopadhyay, U. Debnath, N. Dadhich, M. Sinha Lambiase, Mohanty, NEM, Ellis, Sarkar

Curvature Coupling to fermion spin may lead to different dispersion relations between neutrinos and antineutrinos (assumed *dominant* in the Early eras) in non-spherically symmetric geometries, or geometries with torsion in the Early Universe.

$$\mathcal{L} = \sqrt{-g} \left(i \, \bar{\psi} \, \gamma^a D_a \psi - m \, \bar{\psi} \psi \right)$$

$$D_a = \left(\partial_a - rac{i}{4}\omega_{bca}\sigma^{bc}
ight),$$
 Gravitational covariant derivative including spin connection $\sigma^{ab} = rac{i}{2}\left[\gamma^a,\gamma^b
ight]$ $\sigma^{ab} = rac{i}{2}\left[\gamma^a,\gamma^b
ight]$

$$\sigma^{ab} = rac{i}{2} \left[\gamma^a, \gamma^b
ight]$$

$$\omega_{bca} = e_{b\lambda} \left(\partial_a e_c^{\lambda} + \Gamma_{\gamma\mu}^{\lambda} e_c^{\gamma} e_a^{\mu} \right).$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} ar{\psi} \left[(i \gamma^a \partial_a - m) + \gamma^a \gamma^5 B_a
ight] \psi,$$

$$B^{d} = \epsilon^{abcd} e_{b\lambda} \left(\partial_{a} e_{c}^{\lambda} + \Gamma_{\alpha\mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu} \right)$$

$$\mathcal{L} = \sqrt{-g} \left(i \, \bar{\psi} \, \gamma^a D_a \psi - m \, \bar{\psi} \psi \right)$$

$$D_a = \left(\partial_a - rac{i}{4}\omega_{bca}\sigma^{bc}
ight),$$
 Gravitational covariant derivative including spin connection

$$\sigma^{ab} = rac{i}{2} \left[\gamma^a, \gamma^b
ight]$$

$$\omega_{bca} = e_{b\lambda} \left(\partial_a e_c^{\lambda} + \Gamma_{\gamma\mu}^{\lambda} e_c^{\gamma} e_a^{\mu} \right).$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} \bar{\psi} \left[(i \gamma^a \partial_a - m) + \gamma^a \gamma^5 B_a \right] \psi,$$

$$B^{d} = \epsilon^{abcd} e_{b\lambda} \left(\partial_{a} e_{c}^{\lambda} + \Gamma_{\alpha\mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu} \right)$$

Standard Model Extension type Lorentz-violating coupling (Kostelecky *et al*.)

$$\mathcal{L} = \sqrt{-g} \left(i \, \bar{\psi} \, \gamma^a D_a \psi - m \, \bar{\psi} \psi \right)$$

$$D_a = \left(\partial_a - rac{i}{4}\omega_{bca}\sigma^{bc}
ight),$$
 Gravitational covariant derivative including spin connection $\sigma^{ab} = rac{i}{2}\left[\gamma^a,\gamma^b
ight]$

$$\sigma^{ab} = \frac{i}{2} \left[\gamma^a, \gamma^b \right]$$

$$\omega_{bca} = e_{b\lambda} \left(\partial_a e_c^{\lambda} + \Gamma_{\gamma\mu}^{\lambda} e_c^{\gamma} e_a^{\mu} \right).$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} \bar{\psi} \left[(i \gamma^a \partial_a - m) + \gamma^a \gamma^5 B_a \right] \psi,$$

$$B^d = \epsilon^{abcd} e_{b\lambda} \left(\partial_a e_c^{\lambda} + \Gamma_{\alpha\mu}^{\lambda} e_c^{\alpha} e_a^{\mu} \right)$$

For homogeneous and isotropic Friedman-Robertson-Walker geometries the resulting B^µ vanish

$$\mathcal{L} = \sqrt{-g} \left(i \, \bar{\psi} \, \gamma^a D_a \psi - m \, \bar{\psi} \psi \right)$$

$$D_a = \left(\partial_a - rac{i}{4}\omega_{bca}\sigma^{bc}
ight),$$
 Gravitational covariant derivative including spin connection

$$\sigma^{ab} = \frac{i}{2} \left[\gamma^a, \gamma^b \right]$$

$$\omega_{bca} = e_{b\lambda} \left(\partial_a e_c^{\lambda} + \Gamma_{\gamma\mu}^{\lambda} e_c^{\gamma} e_a^{\mu} \right).$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} ar{\psi} \left[(i \gamma^a \partial_a - m) + \gamma^a \gamma^b B_a
ight] \psi,$$

$$B^{d} = \epsilon^{abcd} e_{b\lambda} \left(\partial_{a} e_{c}^{\lambda} + \Gamma_{\alpha\mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu} \right)$$

Can be constant in a given local frame in Early Universe axisymmetric (Bianchi) cosmologies or near rotating Black holes, or in stringy antisymmetric tensor backgrounds

COSMOLOGICAL CONSEQUENCES

DISPERSION RELATIONS OF NEUTRINOS ARE **DIFFERENT** FROM THOSE OF ANTINEUTRINOS IN **SUCH** GEOMETRIES

 $(p_a \pm B_a)^2 = m^2$, ± refers to chiral fields (here neutrino/antineutrino)

CPTV Dispersion relations

$$E = \sqrt{(\vec{p} - \vec{B})^2 + m^2} + B_0 , \quad \overline{E} = \sqrt{(\vec{p} + \vec{B})^2 + m^2} - B_0$$

but (bare) masses are equal between particle/anti-particle sectors

Abundances of neutrinos in Early Universe, then, **different** from those of antineutrinos if **B**₀ is **non-trivial**, **ALREADY IN THERMAL EQUILIBRIUM**

Equilibrium Distributions different between particle-antiparticles Can these create the observed matter-antimatter asymmetry?

$$f(E,\mu) = \frac{1}{\exp[(E-\mu)/T] \pm 1}$$

$$\delta n \equiv n - ar{n} = g_{d\!f} \int rac{d^3 p}{(2\pi)^3} \left[f(E,\mu) - f(ar{E},ar{\mu})
ight]$$

Abundances of neutrinos in Early Universe different from those of antineutrinos if $B_n \neq 0$

$$\Delta n = \frac{g}{(2\pi)^3} \int d^3 \mathbf{p} \left[\frac{1}{1 + \exp(E_{\nu}/T)} - \frac{1}{1 + \exp(E_{\bar{\nu}}/T)} \right].$$

$$\Delta n = \frac{g}{(2\pi)^2} T^3 \int_0^\infty \int_0^\pi \left[\frac{1}{1 + e^u e^{B_0/T}} - \frac{1}{1 + e^u e^{-B_0/T}} \right] u^2 d\theta du$$

$$u = |\vec{p}|/T$$

$$\Delta n_{\nu} \equiv n_{\nu} - n_{\overline{\nu}} \sim g^{\star} T^{3} \left(\frac{B_{0}}{T} \right)$$

with g^* the number of degrees of freedom for the (relativistic) neutrino.

DISPERSION RELATIONS OF NEUTRINOS ARE **DIFFERENT** FROM THOSE OF ANTINEUTRINOS IN **SUCH** GEOMETRIES

 $(p_a \pm B_a)^2 = m^2$, ± refers to chiral fields (here neutrino/antineutrino)

CPTV Dispersion relations

$$E = \sqrt{(\vec{p} - \vec{B})^2 + m^2} + B_0 , \quad \overline{E} = \sqrt{(\vec{p} + \vec{B})^2 + m^2} - B_0$$

but (bare) masses are equal between particle/anti-particle sectors

Abundances of neutrinos in Early Universe, then, **different** from those of antineutrinos if **B**₀ is **non-trivial**, **ALREADY IN THERMAL EQUILIBRIUM**

Lepton Asymmetry, e.g. for neutrinos

$$\Delta L(T < T_d) = \frac{\Delta n_{\nu}}{s} \sim \frac{B_0}{T_d}$$

CPTV BARYOGENESIS through B-L conserving sphalerons? NO NEED FOR ENHANCED CP VIOLATION IN EARLY UNIVERSE?

Microscopic Origin of SME coefficients?

Several "Geometry-induced" examples:

Non-Commutative Geometries

Axisymmetric Background

Geometries of the Early Universe

Torsionful Geometries (including strings...)

Early Universe T-dependent effects: large @ high T, low values today for coefficients of SME

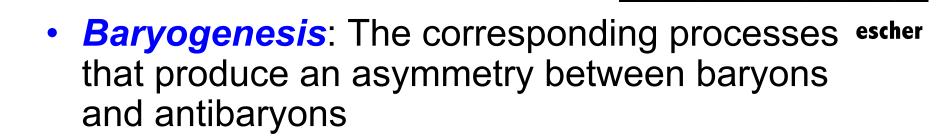
Early Universe Matter Dominance

- Ultimate question: why is the Universe made only of matter?
- Leptogenesis: physical out of thermal equilibrium processes in the (expanding) Early Universe that produce an asymmetry between leptons & antileptons
- Baryogenesis: The corresponding processes that produce an asymmetry between baryons and antibaryons

Early Universe Matter Dominance

 Ultimate question: why is the Universe made only of matter?

Leptogenesis: physical out of the equilibrium processes in the equilibrium processes in the early Universe that produce an a between leptons & antileptons



STANDARD MODEL INCOMPATIBLE WITH BARYOGENESIS

- Matter-Antimatter asymmetry in the Universe Violation of Baryon # (B), C & CP
- Tiny CP violation (O(10⁻³)) in Labs: e.g. $K^0\overline{K}^0$
- But Universe consists only of matter

$$\frac{n_B-\overline{n}_B}{n_B+\overline{n}_B}\sim \frac{n_B-\overline{n}_B}{s}=(8.4-8.9)\times 10^{-11}~{\rm T} > 1~{\rm GeV}$$

Sakharov: Non-equilibrium physics of early Universe, B, C, CP violation

$$n_B - \bar{n}_B$$

but **not quantitatively in SM**, still a mystery

$$d_{CP} = \sin(\theta_{12})\sin(\theta_{23})\sin(\theta_{13})\sin\delta_{CP}$$

$$\cdot (m_t^2 - m_c^2)(m_t^2 - m_u^2)(m_c^2 - m_u^2)(m_b^2 - m_s^2)(m_b^2 - m_d^2)(m_s^2 - m_d^2)$$

Cabbibo-Kobayashi-Maskawa CP Violating phase

Shaposhnikov

$$D = \operatorname{Im} \operatorname{Tr} \left[\mathcal{M}_u^2 \mathcal{M}_d^2 \mathcal{M}_u \mathcal{M}_d \right]$$

$$\delta_{KM}^{CP} \sim \frac{D}{T^{12}} \sim 10^{-20}$$

$$\delta_{KM}^{CP} \sim \frac{D}{T^{12}} \sim 10^{-20}$$
 < $\frac{n_B - \overline{n}_B}{n_B + \overline{n}_B} \sim \frac{n_B - \overline{n}_B}{s} = (8.4 - 8.9) \times 10^{-11}$

 $T \simeq T_{\rm sph}$ sphaleron freeze-out temperature

$$T_{\mathsf{sph}}(m_H) \in [130, 190] \mathsf{GeV}$$

This CP Violation Cannot be the Source of Baryon **Asymmetry in** The Universe

Role of Neutrinos?

- Several Ideas to go beyond the SM (e.g. GUT models, Supersymmetry, extra dimensional models etc.)
- Massive ν are simplest extension of SM
 Shaposhnikov et al. vMSM
- Right-handed massive v may provide extensions of SM with:
 - extra CP Violation and thus Origin of Universe's matter-antimatter asymmetry due to neutrino masses, Dark Matter

Thermal Leptogenesis

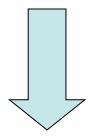
Independent of Initial Conditions

 $@T>>T_{eq}$

Heavy Right-handed Majorana neutrinos enter equilibrium at $T = T_{eq} > T_{decay}$

enhanced Lepton number **CP V.** Violation

$$N_I o H
u, \; ar{H} ar{
u}$$



Out of Equilibrium Decays

$$T \simeq T_{\rm decay} > T_{\rm sph}$$

RIGHT-HANDED NEUTRINOS

Produce Lepton asymmetry

Equilibrated electroweak B, L violating sphaleron interactions (B-L conserv)

Independent of Initial Conditions

Observed Baryon Asymmetry In the Universe (BAU) Fukugita, Yanagida,

Kuzmin, Rubakov, Shaposhinkov

Estimate BAU by solving Boltzmann equations for Heavy Neutrino Abundances

Pilafsis, Riotto...

Buchmuller, di Bari et al.

Thermal Leptogenesis

Independent of Initial Conditions

@ T >>T_{eq}

Heavy Right-handed Majorana neutrinos enter equilibrium at $T = T_{eq} > T_{decay}$

enhanced Lepton number **CP V.** Violation

$$N_I o H
u, \; ar{H} ar{
u}$$

Out of Equilibrium Decays

$$T \simeq T_{\rm decay} > T_{\rm sph}$$

RIGHT-HANDED NEUTRINOS

Produce Lepton asymmetry

Equilibrated electroweak B, L violating sphaleron interactions (B-L conserv)

Independent of Initial Conditions

Observed Baryon Asymmetry
In the Universe (BAU)

Fukugita, Yanagida,

Kuzmin, Rubakov, Shaposhinkov

Estimate BAU by solving Boltzmann equations for Heavy Neutrino Abundances

Pilafsis, Riotto...

Buchmuller, di Bari et al.

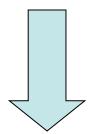
Thermal Leptogenesis

Independent of Initial Conditions

@ T >>T_{eq}

Heavy Right-handed Majorana neutrinos enter equilibrium at $T = T_{eq} > T_{decay}$

enhanced Lepton number CP V. Violation



Out of Equilibrium Decays

$$T \simeq T_{\rm decay} > T_{\rm sph}$$

RIGHT-HANDED NEUTRINOS

Produce Lepton asymmetry

Equilibrated electroweak B, L violating sphaleron interactions (B-L conserv)

Independent of Initial Conditions

Observed Baryon Asymmetry
In the Universe (BAU)

Fukugita, Yanagida,

Kuzmin, Rubakov, Shaposhinkov

Estimate BAU by solving Boltzmann equations for Heavy Neutrino Abundances

Pilafsis, Riotto...
Buchmuller, di Bari et al.

Extra CP Violation: a delicate issue?

- No observed CP Violation as yet in Lepton sector of the Standard Model
- v MSM & in general: Models good for Baryogenesis if sufficient amount of extra CP Violation → (ii) delicate arrangements to obtain necessary CP violation in v sector

Extra CP Violation: a delicate issue?

- No observed CP Violation as yet in Lepton sector of the Standard Model
- ν MSM & in general: Models good for Baryogenesis if sufficient amount of extra CP Violation → (ii) delicate arrangements to obtain necessary CP violation in ν sector

Extra CP Violation: a delicate issue?

- No observed CP Violation as yet in Lepton sector of the Standard Model
- ν MSM ‡ in general: Models good for Baryogenesis if sufficient amount of extra CP Violation → (ii) delicate arrangements to obtain necessary CP violation in ν sector
- NO RIGHT-HANDED NEUTRINOS observed as yel

CPT Violation in non-standard (axisymmetric, torsionful) Geometries of the Early Universe → particle/antiparticle asymmetries in thermal equilibrium.

No need for extra CP Violation (or even sterile ν) for explanation of matter over anti-matter dominance?

Geometry-Induced CPTV can do the job of reproducing the observed Baryon Asymmetry unlike simple case of assumed CPTV mass difference between particle and antiparticle

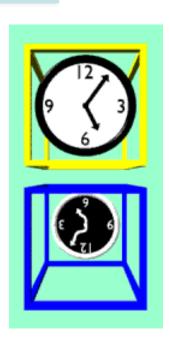
CPT VIOLATION IN THE EARLY UNIVERSE

GENERATE Baryon and/or Lepton ASYMMETRY without Heavy Sterile Neutrinos?

Assume CPT Violation.
e.g. due to *Quantum Gravity* fluctuations, *strong* in the Early Universe

ONE POSSIBILITY:

particle-antiparticle mass differences



physics.indiana.edu

Equilibrium Distributions different between particle-antiparticles Can these create the observed matter-antimatter asymmetry?

$$f(E,\mu)=rac{1}{\exp[(E-\mu)/T]\pm 1}$$
 $m
eq \overline{m}$ $\delta m=m-\overline{m}$ $\delta m\equiv n-ar{n}=g_{df}\intrac{d^3p}{(2\pi)^3}\left[f(E,\mu)-f(ar{E},ar{\mu})
ight]$ $E=\sqrt{p^2+m^2},\,ar{E}=\sqrt{p^2+ar{m}^2}$ Dolgov, Zeldovich Dolgov (2009)

Assume dominant contributions to Baryon asymmetry from quarks-antiquarks

$$m(T) \sim gT$$

High-T quark mass >> Lepton mass

Equilibrium Distributions different between particle-antiparticles Can these create the observed matter-antimatter asymmetry?

$$f(E,\mu) = rac{1}{\exp[(E-\mu)/T] \pm 1}$$
 $m
eq \overline{m}$ $\delta m = m - \overline{m}$ $\delta m \equiv n - \overline{n} = g_{df} \int rac{d^3p}{(2\pi)^3} \left[f(E,\mu) - f(\overline{E},\overline{\mu})
ight]$ $E = \sqrt{p^2 + m^2}, \, \overline{E} = \sqrt{p^2 + \overline{m}^2}$

Assuming dominant contributions to Baryon asymmetry from quarks-antiquarks

$$\beta_T = \frac{n_B}{n_\gamma} = -8.4 \cdot 10^{-3} \left(18 m_u \delta m_u + 15 m_d \delta m_d \right) / T^2$$

Dolgov, Zeldovich Dolgov (2009)

$$n_{\gamma}=0.24T^3$$
 photon equilibrium density at temperature T

$$\beta_T = \frac{n_B}{n_\gamma} = -8.4 \cdot 10^{-3} \left(18 m_u \delta m_u + 15 m_d \delta m_d \right) / T^2$$

$$n_{\gamma} = 0.24T^3$$

Dolgov (2009)

Current bound for proton-anti proton mass diff.

$$\delta m_p < 7 \cdot 10^{-10} \, \mathrm{GeV}$$
 ASACUSA Coll. (2011)

Reasonable to take:

$$\delta m_q \sim \delta m_p$$

Too small

NB: To reproduce
$$\beta^{(T=0)} = 6 \cdot 10^{-10}$$
 need the observed

$$\delta m_q(T = 100 \text{ GeV}) \sim 10^{-5} - 10^{-6} \text{ GeV} >> \delta m_p$$

$$\beta_T = \frac{n_B}{n_\gamma} = -8.4 \cdot 10^{-3} \left(18 m_u \delta m_u + 15 m_d \delta m_d \right) / T^2$$

$$n_{\gamma} = 0.24T^3$$

Dolgov (2009)

Current bound for proton mass diff.

$$\delta m_p < 7 \cdot 10^{-10} \,\text{GeV}$$

ASACUSA Coll. (2011)

Reasonable to take:

$$\delta m_q \sim \delta m_p$$

need

Too small $\beta^{T=0}$

NB: To reproduce
$$\beta^{(T=0)} = 6 \cdot 10^{-10}$$
 the observed

$$\delta m_q (T = 100 \text{ GeV}) \sim 10^{-5} - 10^{-6} \text{ GeV} >> \delta m_p$$

CPT Violating quark-antiquark Mass difference alone CANNOT REPRODUCE observed BAU

CPT Violating Thermal Leptogenesis: a scenario involving antisymmetric Kalb-Ramond tensor

Ellis, NEM, Sarkar (2013)

Neutrino/Antineutrino oscillations, due to $B^0 \neq 0$, originating from string antisymmetric tensor backgrounds; these oscillations are the local processes in the early Universe responsible for the CPT Violation

They occur provided the oscillation length is smaller than the Hubble horizon

For $T_d = O(10^9 \text{ GeV})$ the Hubble horizon size is $10^{-12} \text{ cm } \& \text{ for } B_0 = O(0.1) \text{ GeV}$ the oscillation length is 10^{-13} cm , i.e. smaller than Hubble Horizon, so oscillations can occue \rightarrow provide chemical equilibrium for $T > T_d$

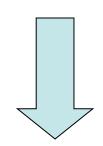
Can reproduce BAU \rightarrow fermion action of SME type with b_μ background

CPT Violating Thermal Leptogenesis

Early Universe $T > T_d = 10^9 \text{ GeV}$

CPT Violation

No need for enhanced CPV.
Heavy Right-handed
Majorana neutrino/
antineutrino oscillations



already in thermal equilibrium

Produce Lepton asymmetry

Equilibrated electroweak B+L violating sphaleron interactions

Independent of Initial Conditions

T = O(100) GeV

$$L = \frac{2}{M} l_L l_L \phi \phi + \text{H.c.}$$

where

$$l_{L} = \begin{bmatrix} v_{e} \\ e \end{bmatrix}_{L}, \begin{bmatrix} v_{\mu} \\ \mu \end{bmatrix}_{L}, \begin{bmatrix} v_{\tau} \\ \tau \end{bmatrix}_{L}$$

Observed Baryon Asymmetry In the Universe (BAU)

Estimate BAU by fixing CPTV background parameters In some models this may imply fine tuning

Neutrino/natineutrino oscillation processes are **UNIQUE** to Majorana neutrinos

Charged leptons and quarks of the Standard Model, which also couple to H-torsion, cannot exhibit such oscillation due to electric charge conservation

Hence: above scenario for Leptogenesis @ T = 10⁹ GeV and then Baryogenesis at T = O(100 GeV) through standard-model B-L conserving sphaleron processes appears unique to Majorana Neutrinos

Consistent with absence of observed CPTV today in neutrino sector Torsion B° = 0 (or very small) today

If a small **B**^a is present today

Standard Model Extension type coupling b_{μ}

Kostelecky, Mewes, Russell, Lehnert ...

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} \bar{\psi} \left[(i \gamma^a \partial_a - m) + \gamma^a \gamma^5 B_a \right] \psi,$$

If a small **B**^a is present today

Standard Model Extension type coupling b_{μ}

Kostelecky, Mewes, Russell, Lehnert ...

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g}\bar{\psi}\left[\left(i\gamma^a\partial_a - m\right) + \gamma^a\gamma^5B_a\right]\psi,$$

If a small **B**^a is present today

Standard Model Extension type coupling b_{μ}

Kostelecky, Mewes, Russell, Lehnert ...

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} \bar{\psi} \left[(i \gamma^a \partial_a - m) + \gamma^a \gamma^5 B_a \right] \psi,$$

If due to GRAVITY, it should couple universally to all particle species of the standard model (electrons etc)

Very Stringent constraints from astrophysics (e.g. for electrons (Masers))

$$|\vec{B}| < 10^{-19} \,\mathrm{eV}$$
 $|B^0| < 10^{-2} \,\mathrm{eV}$

Connect smoothly with a linear in T dependence to the B⁰ of O(0.1 GeV) in our case, required for Leptogenesis at T> 10⁹ GeV in the model?

IS THIS CPTV ROUTE WORTH FOLLOWING?

CPT Violation

Construct Microscopic Quantum Gravity models with strong CPT Violation in Early Universe, but maybe weak today... Fit with all available data... Estimate in this way matter-antimatter asymmetry in Universe.

CONCLUSIONS-OUTLOOK

- Interesting Physics in the Early Universe may imply microscopic origin of SME & allow for smooth connection (Tdependent) with current era
- Plethora of Tests of SME
- At best it may determine today's values of coefficients and connect with early unvierse
- © Quantum Gravity
 though may imply
 effects beyond SME
 such as ω-effect on
 EPR or decoherence
- Independent tests of T &
 CPT possible in entangled
 states of particles → use
 in antipotonic atoms?

SPARES

Can neutrinos provide an explanation of observed matter-antimatter asymmetry via CPT VIOLATION (CPTV)?

NB ...CPT Violating neutrino-antineutrino Mass difference alone MAY REPRODUCE observed BAU

$$m_i = an\!eta_i \overline{m}_i$$
 $i=1,2,3$ Light v species

Barenboim, Borissov, Lykken, Smirnov (01) PHENOMENOLOGICAL MODELS

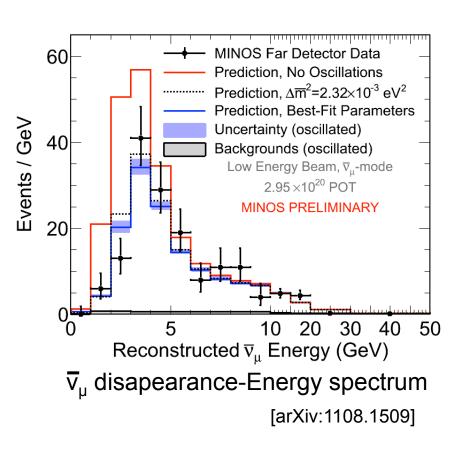
$$n_B = n_\nu - n_{\bar{\nu}} \simeq \frac{\mu_\nu T^2}{6}$$

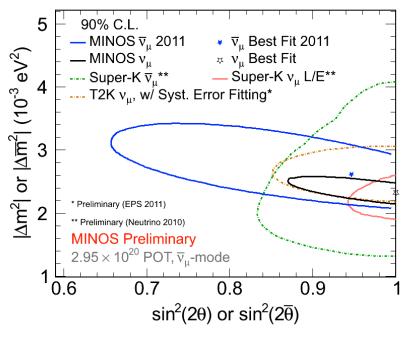
$$\frac{n_B}{s} \sim \frac{\mu_{\nu}}{T} \sim 10^{-11}$$

@ 100 GeV

MINOS Exp. RESULTS ON Potential Neutrino-Antineutrino OSCILLATION PARAMETER DIFFERENCES

http://www-numi.fnal.gov



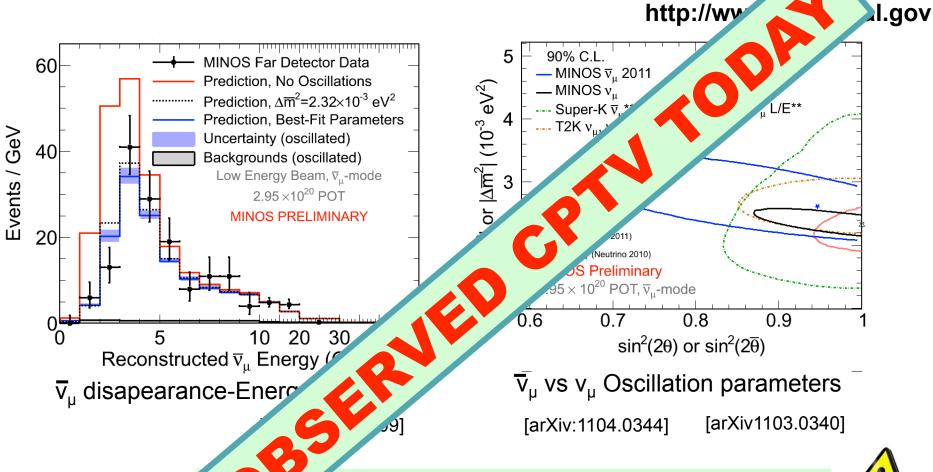


 $\overline{\overline{v}}_{\mu}$ vs v_{μ} Oscillation parameters

[arXiv:1104.0344] [arXiv1103.0340]

 \overline{V}_{μ} disappearance $\Delta \overline{m}^2 = (2.62 + 0.31 - 0.28 \text{ (stat.)} \pm 0.09 \text{ (syst.)}) \times 10^{-3} \text{ eV}^2, \sin^2(2\Theta) = 0.95 + 0.10 - 0.11 \text{ (stat.)} \pm 0.01 \text{ (syst.)}.$

 V_{u} disappearance: $\Delta m^2 = (2.32 + 0.12 - 0.08) \times 10^{-3} \text{ eV}^2$, $\sin^2(2\Theta) = 1.00 \text{ (sin}^2(2\Theta) > 0.90 @ 90\% CL)$



√u disappearance

-0.31-0.28 (stat.) ±0.09 (syst.))x10⁻³ eV², =0.95 +0.10-0.11 (stat.) ±0.01 (syst.).

 10^{-2} = (2.32+0.12-0.08)x10⁻³ eV², sin²(2 Θ) = 1.00 (sin²(2 Θ) > 0.90 @ 90% CL v_u disappe

Consiste with equality of mass differences between particle/antiparticles