Antiprotonic Helium Spectroscopy Toward better than 10 digit precision

V.I. Korobov

Joint Institute for Nuclear Research 141980, Dubna, Russia korobov@theor.jinr.ru

LEAP-13, June, 2013

Theory Experiment Major problems

Introduction.

The last year state of art in precision spectroscopy of $He^+\bar{p}$.

Was presented in March, 2012, at the JPS Meeting.

Theory Experiment Major problems

The two-photon $(36, 34) \rightarrow (34, 32)$ transition

ΔE_{nr}	=	1 522 150 208.13
ΔE_{α^2}	=	-50 320.63
ΔE_{α^3}	=	7069.5(0.3)
ΔE_{α^4}	=	113.1
ΔE_{α^5}	=	-11.3(2.1)
ΔE_{tota}	<i>ı</i> =	1 522 107 058.8(2.1)(0.3)

Transition $(36, 34) \rightarrow (34, 32)$ (in MHz).

Introduction. Last year status of research The nonrelativistic Bethe Logarithm

Relativistic corrections to the Bethe logarithm in the two-center problem

Theory Experiment Major problem

Two-photon spectroscopy. Year 2010.

[M. Hori et al. Nature 475, 484 (2011)]

		•		
Isotope	Transition $(n - 1) = (n - 2)$	Transition frequency (MHz)		
	$(n, n) \rightarrow (n-2, n-2)$	Experiment	Theory	
p ⁴ He ⁺	(36, 34)→(34, 32)	1,522,107,062(4)(3)(2)	1,522,107,058.9(2.1)(0.3)	
5 ³ Ho ⁺	$(33, 32) \rightarrow (31, 30)$	2,145,054,858(5)(5)(2)	2,145,054,857.9(1.6)(0.3)	
prite	$(55, 55) \rightarrow (55, 51)$	1,555,045,100(7)(7)(5)	1,555,045,100.7(2.2)(0.2)	

Experimental values show respective total, statistical and systematic 1-s.d. errors in parentheses; theoretical values (ref. 3 and V. I. Korobov, personal communication) show respective uncertainties from uncalculated QED terms and numerical errors in parentheses.

$A_r(e) = 0.0005485799091(7)[1.4 \times 10^{-9}]$

Theory Experiment Major problems

Major problems to be solved

- The nonrelativistic Bethe logarithm ($m\alpha^5$ order) has been calculated within the Feshbach formalism only and the accuracy is limited by at most 5 significant digits.
- Direct numerical calculations of the $m\alpha^7$ order one-loop self-energy contribution had not yet been completed that brings the largest theoretical uncertainty.
- The theoretical relative uncertainty of $8 \cdot 10^{-10}$ for the transition frequencies is still larger than the one for the proton-to-electron mass ratio.

・ロッ ・回 ・ ・ ヨ ・ ・

CCR formalism The second order perturbation theory in CCR The nonrelativistic Bethe logarithm in CCR

The nonrelativistic Bethe Logarithm

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э.

CCR Resonances

The Coulomb Hamiltonian is analytic under dilatation transformations

 $(U(\theta)f)(\mathbf{r}) = e^{m\theta/2}f(e^{\theta}\mathbf{r}),$

for real θ and can be analytically continued to the complex plane.

The CCR method "rotates" the coordinates of the dynamical system

$$r_{ij}
ightarrow r_{ij} e^{i\varphi}, \qquad \theta = i\varphi$$

where φ is the parameter of the complex rotation.

Under this transformation the Hamiltonian changes as a function of arphi

 $H_{\varphi} = T e^{-2i\varphi} + V e^{-i\varphi},$

and the continuum spectrum of H_{φ} rotates on the complex plane around branch points ("thresholds") to "uncover" resonant poles.

CCR Resonances

The resonance energy is determined by solving the complex eigenvalue problem for the "rotated" Hamiltonian

 $(H_{\varphi}-E)\Psi_{\varphi}=0,$

The eigenfunction Ψ_{φ} obtained from this equation is square-integrable and the corresponding complex eigenvalue $E = E_r - i\Gamma/2$ defines the energy E_r and the width of the resonance, Γ .

To evaluate the nonrelativistic Bethe logarithm for CCR states a second order perturbation theory is required.

Theorem (B. Simon)

Let H be a three-body Hamiltonian with Coulomb pairwise interaction, and $W(\theta)$ be a dilatation analytic perturbation. Let E_0 be an isolated simple resonance energy (discrete eigenvalue of $H(\theta)$). Then for β small, there is exactly one eigenstate of $H(\theta) + \beta W(\theta)$ near E_0 and

 $E(\beta) = E_0 + a_1\beta + a_2\beta^2 + \dots$

is analytic near $\beta = 0$. In particular,

$$a_1 = E'(0) = \langle \Psi_0^*(\theta) | W(\theta) | \Psi_0(\theta)
angle \,,$$

$$a_{2} = \sum_{n \neq 0} \frac{\langle \Psi_{0}^{*}(\theta) | W(\theta) | \Psi_{n}(\theta) \rangle \langle \Psi_{n}^{*}(\theta) | W(\theta) | \Psi_{0}(\theta) \rangle}{E_{0} - E_{n}(\theta)}$$
(1)

It is assumed that the wavefunction are normalized as $\langle \Psi_{\theta}^*, \Psi_{\theta} \rangle = 1$. Coefficients a_1 , a_2 , etc **do not depend** on θ if only branches uncover E_0 and vicinity.

CCR formalism The second order perturbation theory in CCR The nonrelativistic Bethe logarithm in CCR

The nonrelativistic Bethe logarithm

A new set of calculations is needed for

$$\beta(L, \nu) = \frac{\langle \mathbf{J}(H_{\varphi} - E_0) \ln ((H_{\varphi} - E_0)/R_{\infty}) \mathbf{J} \rangle}{\langle [\mathbf{J}, [H_{\varphi}, \mathbf{J}]]/2 \rangle}$$

where H_{φ} is a rotated Hamiltonian In other terms Bethe logarithm may be expressed as

$$\beta(L, \nu) = \frac{\int_{0}^{E_{h}} k \, dk \left\langle \mathsf{J}\left(\frac{1}{E_{0}-H-k}+\frac{1}{k}\right) \mathsf{J} \right\rangle + \int_{E_{h}}^{\infty} \frac{dk}{k} \left\langle \mathsf{J}\frac{(E_{0}-H)^{2}}{E_{0}-H-k} \mathsf{J} \right\rangle}{\left\langle [\mathsf{J}\left[H,\mathsf{J}\right]\right] \right\rangle / 2} \, .$$

via basic integrand

$$J(k) = \left\langle \mathbf{J} \left(E_0 - H_{\varphi} - k \right)^{-1} \mathbf{J} \right\rangle.$$

Nonrelativistic Bethe log. Numerical scheme.

Basis set for intermediate states $[\exp(-\alpha r_1 - \beta r_2 - \gamma r_{12})]$:

- A regular basis set with regular values of parameters (α, β, γ) .
- A special basis set with exponentially growing parameters for a particular r_{ij}

$$\begin{cases} A_1^{(0)} = A_1, & A_2^{(0)} = A_2 \\ A_1^{(n)} = \tau^n A_1, & A_2^{(n)} = \tau^n A_2 \end{cases}$$

where $\tau = A_2/A_1$.

Typically $[A_1, A_2] = [2.5, 4.5]$, and $n_{\text{max}} = 5-7$, that corresponds to the photon energy interval $k \in [0, 10^4]$.

Solution For other pairs of (*i*, *j*) we take the similar basis sets as in 2.

Then the Hamiltonian H_I is diagonalized to get a set of (pseudo)state energies, E_m , and $\langle 0|i\mathbf{J}|m\rangle$.

These two sets of data are enough to restore J(k).

CCR formalism The second order perturbation theory in CCR The nonrelativistic Bethe logarithm in CCR

Leading order radiative corrections

• The one-loop self-energy correction $(R_{\infty}\alpha^3)$:

$$E_{se}^{(3)} = \alpha^3 \frac{4}{3} \left[\ln \frac{1}{\alpha^2} - \beta(\boldsymbol{L}, \boldsymbol{v}) + \frac{5}{6} - \frac{3}{8} \right] \left\langle Z_{\rm He} \delta(\mathbf{r}_{\rm He}) + Z_{\bar{p}} \delta(\mathbf{r}_{\bar{p}}) \right\rangle,$$

where

$$\beta(L, \mathbf{v}) = \frac{\langle \mathbf{J}(H_0 - E_0) \ln ((H_0 - E_0)/R_\infty) \mathbf{J} \rangle}{\langle [\mathbf{J}, [H_0, \mathbf{J}]]/2 \rangle}$$

is the Bethe logarithm of the three-body state.

• Recoil correction of order $R_{\infty} \alpha^3 (m/M)$:

$$E_{recoil}^{(3)} = \sum_{i=1,2} \frac{Z_i \alpha^3}{M_i} \left\{ \frac{2}{3} \left(-\ln \alpha - 4\beta(\boldsymbol{L}, \boldsymbol{v}) + \frac{31}{3} \right) \langle \delta(\mathbf{r}_i) \rangle - \frac{14}{3} \langle Q(r_i) \rangle \right\},$$

where Q(r) is the so-called Araki-Sucher term.

• One-loop vacuum polarization:

$$E_{vp}^{(3)} = rac{4lpha^3}{3} \left[-rac{1}{5}
ight] \left\langle Z_{
m He} \delta({f r}_{
m He}) + Z_{ar p} \delta({f r}_{ar p})
ight
angle.$$

Relativistic corrections to the Bethe logarithm in the two-center problem

General formula for the one-loop self-energy Calculation of the low energy part Results

One-loop radiative correction in order $m\alpha^7$

The finite expression in a general form may be written

$$\begin{split} \Delta E_{\rm se}^{(7)} &= \frac{\alpha}{\pi} \Biggl\{ \left(Z\alpha \right)^6 \mathcal{L} + \left(\frac{5}{9} + \frac{2}{3} \ln \left[\frac{1}{2} (Z\alpha)^{-2} \right] \right) \left\langle 4\pi\rho \ Q(E-H)^{-1}Q \ H_B \right\rangle_{\rm fin} \\ &+ 2 \left\langle H_{\rm so} \ Q(E-H)^{-1}Q \ H_B \right\rangle + \left(\frac{779}{14400} + \frac{11}{120} \ln \left[\frac{1}{2} (Z\alpha)^{-2} \right] \right) \left\langle \nabla^4 V \right\rangle_{\rm fin} \\ &+ \left(\frac{23}{576} + \frac{1}{24} \ln \left[\frac{1}{2} (Z\alpha)^{-2} \right] \right) \left\langle 2i\sigma^{ij}\rho^i \nabla^2 V \rho^j \right\rangle \\ &+ \left(\frac{589}{720} + \frac{2}{3} \ln \left[\frac{1}{2} (Z\alpha)^{-2} \right] \right) \left\langle \mathcal{E}^2 \right\rangle_{\rm fin} + \frac{3}{80} \left\langle 4\pi\rho \ \mathbf{p}^2 \right\rangle_{\rm fin} - \frac{1}{4} \left\langle \mathbf{p}^2 H_{\rm so} \right\rangle \\ &+ (Z\alpha)^2 \left[-\ln^2 [(Z\alpha)^{-2}] + \left[\frac{16}{3} \ln 2 - \frac{23}{60} \right] \ln [(Z\alpha)^{-2}] - 0.81971202(1) \right] \left\langle \pi\rho \right\rangle \end{split}$$

It has been obtained from [U. Jentschura, A. Czarnecki, and K. Pachucki, Phys. Rev. A **72**, 062102 (2005)] and comparison with the hydrogen ground state result [K Pachucki, Ann. Phys. (N.Y.) **226**, 1 (1993)].

General formula for the one-loop self-energy Calculation of the low energy part Results

Low energy contribution. Relativistic Bethe logarithm

Relativistic corrections to the electron wave function

$$E_{L1} = \frac{2\alpha^5}{3\pi m^2} \int_0^{\Lambda} k \, dk \, \delta_{H_B} \left\langle \mathbf{p} \left(\frac{1}{E_0 - H - k} \right) \mathbf{p} \right\rangle = \frac{2\alpha^5}{3\pi m^2} \int_0^{\Lambda} k \, dk \, P_{rc}^{(1)}(k)$$
$$P_{rc}^{(1)}(k) = 2 \left\langle H_B Q(E_0 - H)^{-1} Q \mathbf{p} \left(E_0 - H - k \right)^{-1} \mathbf{p} \right\rangle$$
$$+ \left\langle \mathbf{p} \left(E_0 - H - k \right)^{-1} \left(H_B + \langle H_B \rangle \right) \left(E_0 - H - k \right)^{-1} \mathbf{p} \right\rangle$$

2 Retardation

$$E_{L2} = \frac{2\alpha^5}{3\pi m^2} \int_0^{\Lambda} k \, dk \, P_{nq}(k)$$

$$P_{nq}(k) = \frac{3k^2}{8\pi} \int_S dS_n \left(\delta^{ij} - n^i n^j \right) \left\{ \left\langle p^i (\mathbf{n} \cdot \mathbf{r}) \left(E_0 - H - k \right)^{-1} (\mathbf{n} \cdot \mathbf{r}) p^i \right\rangle - \left\langle p^i (\mathbf{n} \cdot \mathbf{r})^2 \left(E_0 - H - k \right)^{-1} p^i \right\rangle \right\}$$

(ロ) (同) (E) (E) (E) (E)

General formula for the one-loop self-energy Calculation of the low energy part Results

Low energy contribution. Relativistic Bethe logarithm

Modification of vertex interactions in the SE diagram

$$E_{L3} = \frac{4\alpha^5}{3\pi m^2} \int_0^{\Lambda} k \, dk \left\langle \delta \mathbf{j} \left(\frac{1}{E_0 - H - k} \right) \mathbf{p} \right\rangle = \frac{4\alpha^5}{3\pi m^2} \int_0^{\Lambda} k \, dk \, P_{rc}^{(2)}(k)$$
$$P_{rc}^{(2)}(k) = \left\langle \left(-p^2 p^i - \frac{1}{2} \sigma^{ij} \nabla^j V \right) (E_0 - H - k)^{-1} p^i \right\rangle$$

Then the relativistic Bethe logarithm is defined

$$\begin{aligned} \mathcal{L} &= \beta_1 + \beta_2 + \beta_3 \\ \beta_1 &= \frac{2}{3} \int_0^{E_h} k \, dk \left[P_{rc}^{(1)}(k) - \frac{A_{rc}^{(1)}}{k} - \frac{B_{rc}^{(1)}}{k^{3/2}} \right] \\ &+ \frac{2}{3} \int_{E_h}^\infty k \, dk \left[P_{rc}^{(1)}(k) - \frac{A_{rc}^{(1)}}{k} - \frac{B_{rc}^{(1)}}{k^{3/2}} - \frac{C_{rc}^{(1)} \ln k}{k^2} - \frac{D_{rc}^{(1)}}{k^2} \right] \end{aligned}$$

etc.

General formula for the one-loop self-energy Calculation of the low energy part Results

Relativistic corrections to the Bethe logarithm in the two-center problem

 $N(R) = \pi \left(Z_1^3 \delta(\mathbf{r}_1) + Z_2^3 \delta(\mathbf{r}_2) \right).$

A > < > > < > >

General formula for the one-loop self-energy Calculation of the low energy part Results

The two-photon $(36, 34) \rightarrow (34, 32)$ transition

ΔE_{nr}	=	1 522 150 208.13
ΔE_{α^2}	=	-50 320.63
ΔE_{α^3}	=	7 070.28
ΔE_{α^4}	=	113.11
ΔE_{α^5}	=	-9.82(20)
ΔE_{α^6}	=	-0.06(6)
ΔE_{tota}	<i>ı</i> =	1 522 107 061.0(2)

Transition $(36, 34) \rightarrow (34, 32)$ (in MHz). CODATA10 recommended values of constants.

General formula for the one-loop self-energy Calculation of the low energy part Results

Conclusions

Conclusions:

- The nonrelativistic energies as well as relativistic corrections both $m\alpha^4$ and $m\alpha^6$ orders are available with required precision;
- On the two major sources of numerical and theoretical uncertainty have been addressed and completed in the past year.
- The theoretical precision of 10⁻¹⁰ for the transition frequencies is achieved.
- Determination of the improved electron-to-(anti)proton mass ratio from He⁺p̄ spectroscopy now become real from the theoretical point of view.

Thank You for Your Attention!