Partial Wave Analysis

for

pp and e⁺e⁻ Annihilation Processes

Bertram Kopf

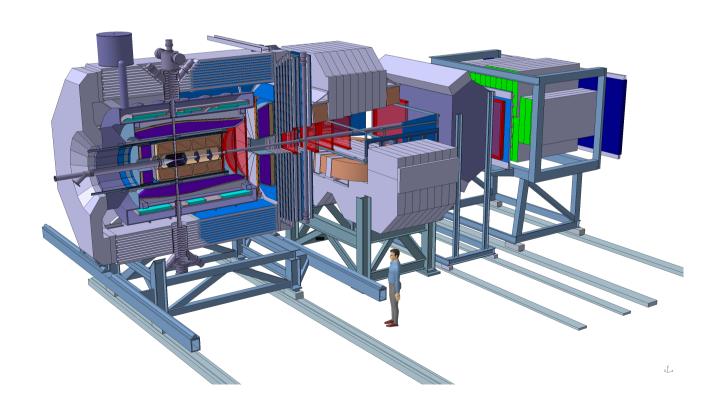
Leap 2013
11th International Conference on Low Energy Antiproton Physics
Uppsala, 10-15 June, 2013

Outline

- PWA software for PANDA and other hadron spectroscopy experiments
- PWA @ PANDA
 - detector and physics program
 - PWA challenges for PANDA
- Analyses of Crystal Barrel @ LEAR data with relevance for PANDA
 - investigation of the pp annihilation process and the production mechanisms of vector mesons
 - $\rightarrow \overline{p}p \rightarrow \omega \pi^0$
 - $\rightarrow \overline{p}p \rightarrow K^+K^-\pi^0$ with the focus on $\phi\pi^0$ and $K^{*\pm}K^{\mp}$
- PWA of BESIII data

PWA Software Package

PWA activities for PANDA started in Bochum in spring 2010 with the aims:


- to develop a generic PWA software package
- to support all physics cases to be studied with PANDA and partly other hadron spectroscopy experiments

Software package PAWIAN (**PA**rtial **W**ave **I**nteractive **AN**alysis) already in a good shape and first analyses have been started

- Full hypothesis and other input settings defined via configuration files
- Event based maximum likelihood fit
- Minimization with MINUIT2 in multithreaded and networked mode
- qft++: decay amplitudes in various formalisms (*M. Williams (CLAS, GlueX)* Computer Physics Communications, Vol. 180, Issue 10, 2009)

PANDA @ FAIR

- Fixed target experiment integrated into the HESR @ FAIR, Darmstadt
- pp- and pA-annihilation with p-momentum between 1.5-15 GeV/c
- Rich physics program with the focus on charmonium and open charm spectroscopy and the search of exotic states

PWA Challenges @ PANDA

pp production mechanism

- Contributing initial pp states rise with increasing beam momentum
 - number of fit parameters rises dramatically

•
$$p_{\overline{p},max}$$
 = 1.94 GeV/c @ CB-LEAR $\rightarrow L_{max} \approx 5$

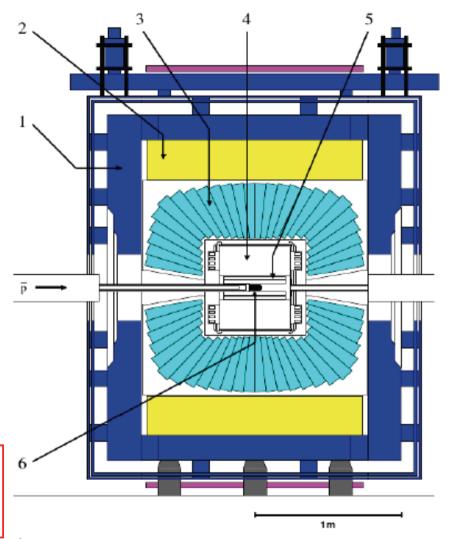
• $p_{\overline{p},max}$ = 15 GeV/c @ PANDA \rightarrow L_{max}=?

threshold effects relevant for production of heavy resonances

(e.g. charmonia)

J	Singulett	J^{PC}	Triplett	J^{PC}	Triplett	J^{PC}
	$\lambda = 0$		$\lambda = \pm 1$		$\lambda = \pm 1, 0$	
0	$^{1}S_{0}$	0-+			$^{3}P_{0}$	0++
1	${}^{1}P_{1}$	1+-	$^{3}P_{1}$	1++	${}^3S_1, {}^3D_1$	1
2	$^{1}D_{2}$	2^{-+}	$^{3}D_{2}$	2	$^{3}P_{2}, ^{3}F_{2}$	2++
3	${}^{1}F_{3}$	3^{+-}	${}^{3}F_{3}$	3^{++}	$^{3}D_{3}, ^{3}G_{3}$	3
4	$^{1}G_{4}$	4-+	3G_4	4	$^{3}F_{4}, ^{3}H_{4}$	4++
5	$^{1}H_{5}$	5^{+-}	$^{3}H_{5}$	5++	$^{3}G_{5}, ^{3}I_{5}$	5
6	$^{1}I_{6}$	6-+	$^{3}I_{6}$	6	$^{3}H_{6}, ^{3}J_{6}$	6++

Statistics


- Low cross sections for some channels of interest (pb-nb)
- How many events are needed for reliable fits?

PWA with Crystal Barrel Data

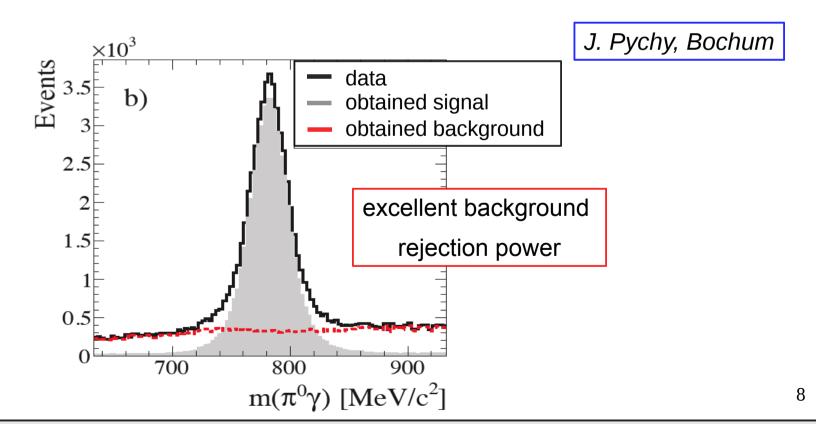
Crystal Barrel experiment @ LEAR

- Fixed target experiment
- pp annihilation at rest and in flight
 - highest beam momentum 1.94 GeV/c
- Physics program
 - study of the annihilation process
 - spectroscopy of light mesons
 - search for exotics: glueballs, hybrids and multiquark states
- In operation between 1989 and 1996

Excellent opportunity for the investigation of specific physics aspects for PANDA

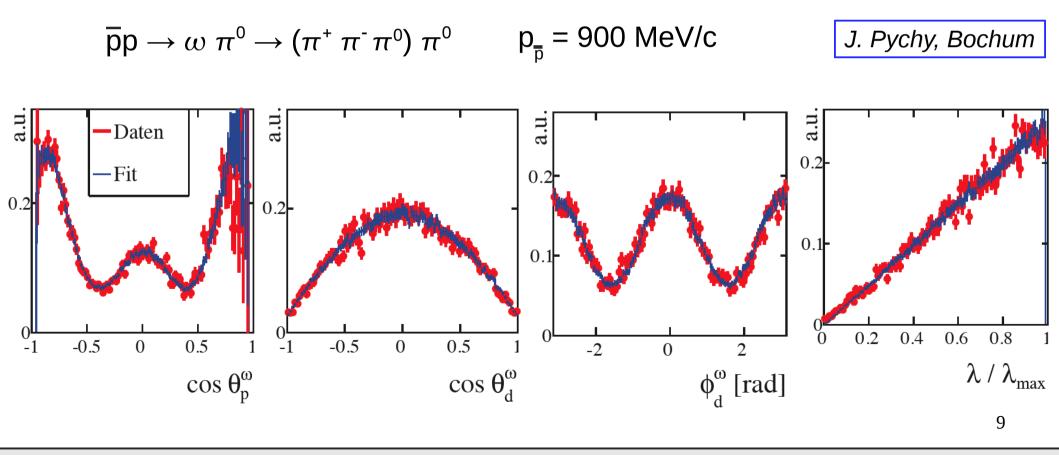
- (1) Iron Joke, (2) Magnet Coil
 (3) (3) CsI(Tl)-Calorimeter, (4) Jet-Drift-Chamber
 (5) Vertex-Detector, (6) LH₂-Target

PWA: $\overline{p}p \rightarrow \omega \pi^0$


- Relatively simple reaction with easy access to the initial pp-system
- Determination of the ω spin density matrix (SDM) which contains the full information of the production mechanism
- Two decay modes $\omega \to \pi^0 \gamma$ and $\omega \to \pi^+ \pi^- \pi^0$ separately analyzed at various beam momenta between 0.6-1.94 GeV/c

PWA Strategy

- Preparation of accurate and clean data samples by applying a kinematic fit and an event based background rejection
 - old offline software re-installed
- Fits to determine the largest contributing L_{max} of the $\overline{p}p$ system
 - > description of the full decay chain including the ω decay by making use of the helicity and canonical formalism
- Extraction of the ω -SDM with two independent methods from
 - the obtained PWA fit result
 - angular distribution of the decay products (Schilling method)


$\overline{p}p \rightarrow \omega \pi^0$: Background Rejection

- New background rejection method by assigning a probability for each event to be a signal event (M. Williams, M. Bellis, C.A. Meyer: arXiv:0809.2548 [nucl-ex])
- Event weight for each event
 - determination of the signal to background ratio for the n nearest neighbors in the phase space
- Origin of the background sources not necessarily needed to be known

PWA results for $\overline{p}p \rightarrow \omega \pi^0$

- L_{max} determined unambiguously
- \bullet $\rm L_{\rm max}$ increases from 3 @ 600 MeV/c to 5 @ 1940 MeV/c

$\overline{p}p \rightarrow \omega \pi^0$: ω Spin Density Matrix

- SDM provides all information of the production mechanism
- Spin 1 particle: 3x3 complex elements

Normalization, parity and hermicity conservation yields to only 4 independent

real parameters

$$\rho = \begin{pmatrix} 1/2(1-\rho_{00}) & \Re\rho_{10} + i\Im\rho_{10} & \rho_{1-1} \\ \Re\rho_{10} - i\Im\rho_{10} & \rho_{00} & -\Re\rho_{10} + i\Im\rho_{10} \\ \rho_{1-1} & -\Re\rho_{10} - i\Im\rho_{10} & 1/2(1-\rho_{00}) \end{pmatrix}$$

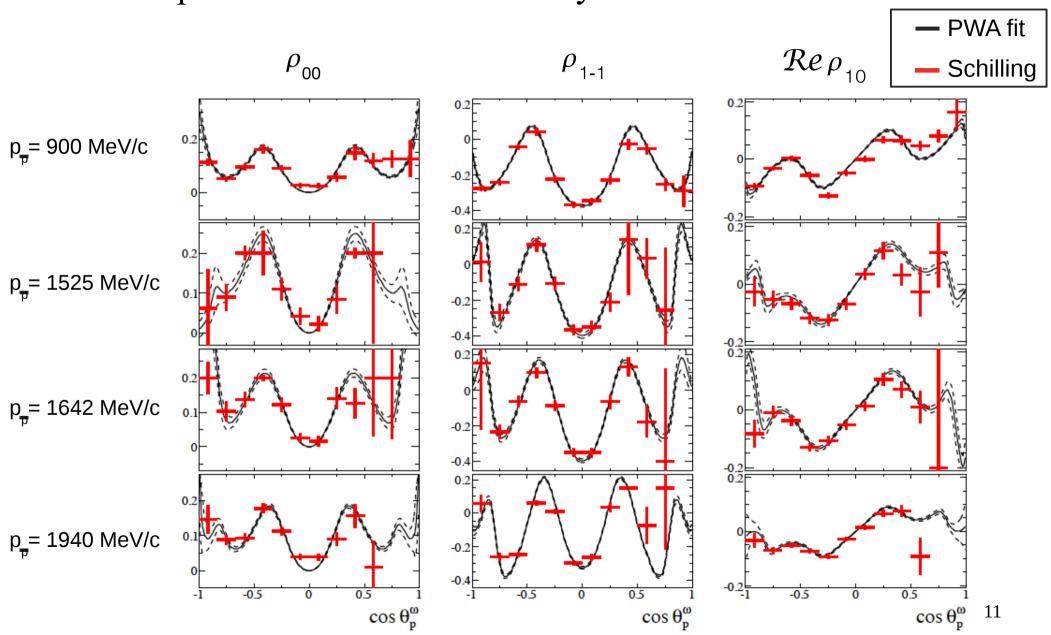
- Alignment if $\rho_{11} \neq \rho_{00}$
- Extraction of the elements via PWA:

$$ho_{\lambda_{\omega}\lambda_{\omega}'}^{0}=rac{1}{N}\sum_{M_{ar{p}p}}A_{M_{ar{p}p},\lambda_{\omega}}A_{M_{ar{p}p},\lambda_{\omega}'}^{st} \quad ext{with} \quad N=\sum_{M_{ar{p}p},\lambda_{\omega}}\left|A_{M_{ar{p}p},\lambda_{\omega}}
ight|^{2}$$

• Extraction of the parameters via fit to decay angular distribution ($\omega \to \pi^+ \pi^- \pi^0$)

$$W(cos(\theta,\phi)) \propto rac{1}{2}(1-
ho_{00}) + rac{1}{2}(3
ho_{00}-1)\cos\theta \ -\sqrt{2}\,\Re
ho_{10}\,sin2 heta\,cos\phi -
ho_{1-1}\,sin^2 heta\,cos2\phi$$

Schilling, Seyboth and Wolf, Nucl.Phys. B15 (1970) 397-412, Erratum-ibid. B18 (1970) 332

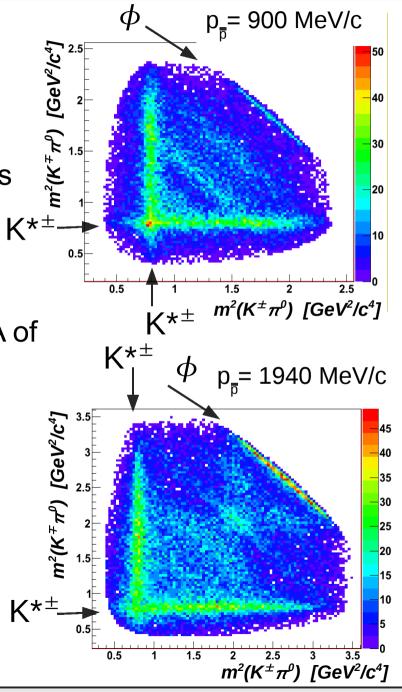

Bertram Kopf, Ruhr-Universität Bochum

H. Koch, Helicity amplitude for $\overline{p}p->\omega\pi^0$,

Internal PANDA Note

$\overline{p}p \rightarrow \omega \pi^0$: ω Spin Density Matrix

SDM parameters in the ω helicity frame for $\omega \rightarrow \pi^+\pi^-\pi^0$



$\overline{p}p \rightarrow \omega \pi^0$: ω Spin Density Matrix

- Good agreement between the two independent methods
- ρ_{00} < 0.33 over the whole production angle for all beam momenta
 - strong alignment visible
- Strong oscillatory dependence along the production angle for all beam momenta
 - origin not yet clear
 - formation of intermediate resonances?
- Comparison of SDMs obtained for different decay modes is a good check for the understanding of the detector
 - accurate access to the systematics
 - suitable for first measurements @ PANDA

$\overline{p}p \to K^+K^-\pi^0$

- Contains $\phi\pi^0$ and $K^{*\pm}K^{\mp}$ events
- Production of vector mesons with strangeness
 - > different process in comparison to ω production
 - rearrangement vs. annihilation
- Interference of resonances require a full PWA of the complete channel
- SDM via extraction of the fitted ϕ and K* $^{\pm}$ amplitudes

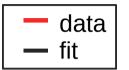
PWA: $\overline{p}p \rightarrow K^+K^-\pi^0$

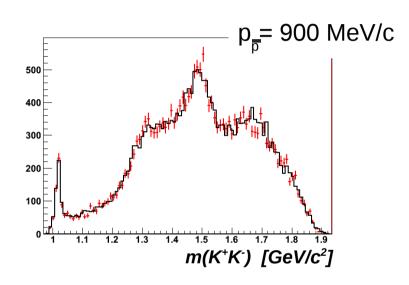
- Full PWA from the initial to the final state
- L_{max}=4 @ 900 MeV/c and 1940 MeV/c
- Hypotheses based on previous results (Crystal Barrel: Phys. Lett. B639 (2006) 165)
 - $\rightarrow \phi \pi^0, \, \phi(1680) \pi^0,$
 - $f_2(1270)\pi^0$, $f'_2(1525)\pi^0$
 - $\rightarrow a_{2}(1320)\pi^{0}$
 - K*K, K*(1680)K
 - \rightarrow all $f_0^0\pi^0$ channels via (KK)_s-wave
 - \rightarrow all K* $^{\pm}_{0}$ K channels via (K π)_s (I=1/2) wave
 - \rightarrow K (K π)_S(I=3/2) wave

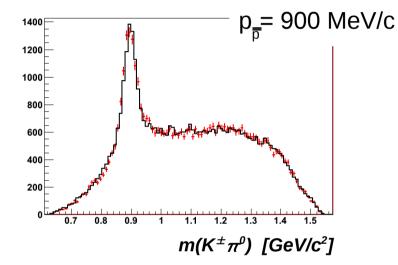
K-matrix parametrization by Anisovich and Sarantsev, Eur. Phys. J. A16, 229(2003)

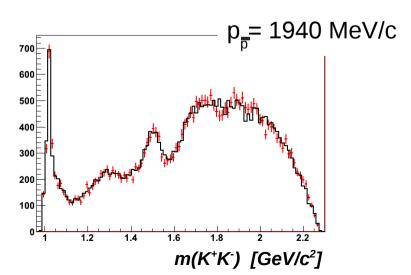
K-matrix parametrization used by FOCUS:

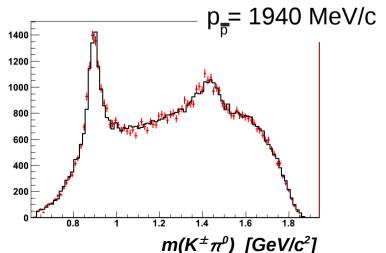
Phys. Lett. B653 (2007) 1-11

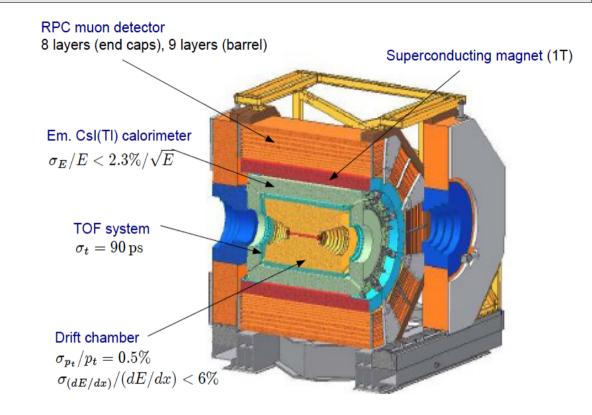

- Many resonances yield in a large number fit parameters
 - > 420 @ 900 MeV/c
 - > 464 @ 1940 MeV/c


PWA: $\overline{p}p \rightarrow K^+K^-\pi^0$


Excellent description of the data


J. Pychy, Bochum


• Extraction of the SDMs for ϕ and K* possible



15

PWA of BESIII Data

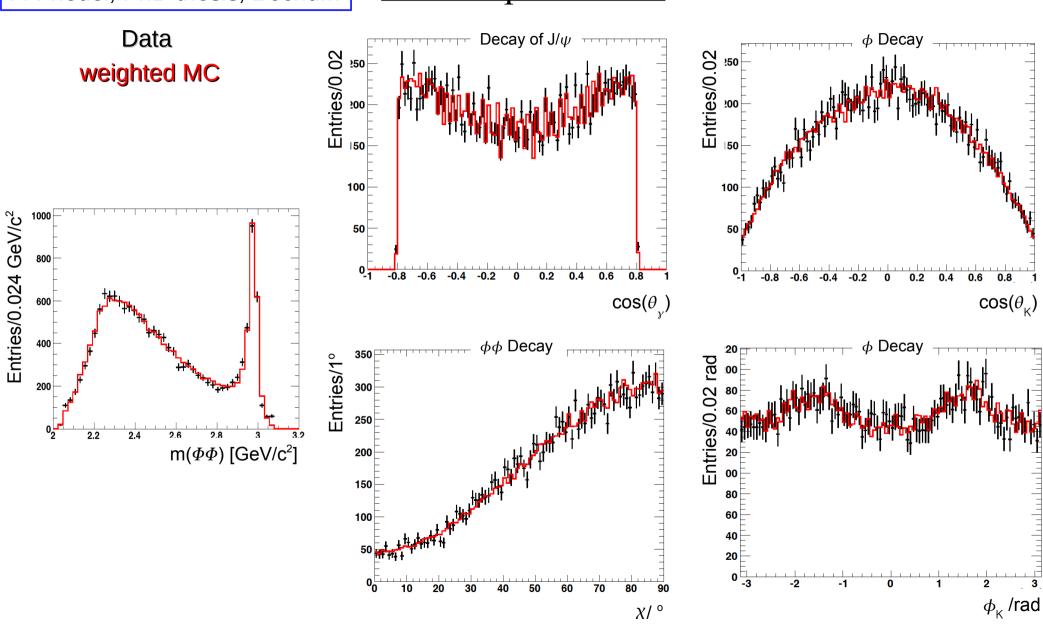
- Symmetric e⁺e⁻ collider
 - beam energy 1.0-2.3 GeV
 - > max. luminosity 10³³ cm⁻²s⁻¹
- Physics program
 - light meson spectroscopy
 - charmonium spectroscopy
 - open charm physics

> . . .

- PWA activities focused on search for exotic particles
 - \rightarrow initial states limited to J^{PC}=1⁻ with helicities $\lambda = \pm 1$
- Radiative decays from charmonia, especially from J/ψ
 - gluon rich process

$J/\psi \rightarrow \phi \phi \gamma$

- Glueballs decay flavor blind
 - \rightarrow strong coupling to $\phi\phi$
 - > one of the most promising channel: $J/\psi \rightarrow \phi\phi\gamma \rightarrow (K^+K^-)(K^+K^-)\gamma$
- Lightest tensor glueball predicted between 2.0-2.4 GeV/c²
- Unexpected large cross sections of three f_2 resonances in $\pi^- p \to n \phi \phi$ (Atkin et. al.: Phys.Lett. B201 (1988) 568-572)


PWA Strategy

- Mass independent fits by scanning the invariant $\phi\phi$ mass
 - identification of the strongest waves
- Mass dependent fits in the complete phase space using Breit-Wigner and Flatté parametrizations
- Helicity formalism
- First results very promising and good description of the data

$J/\psi \rightarrow \phi \phi \gamma$

Mass dependent fit

Summary

- New developed PWA software package is in a good shape and first analyses have been shown
- Analyses of Crystal Barrel @ LEAR data with relevance for PANDA
 - > pp initial states and production of vector mesons
 - $\rightarrow \overline{p}p \rightarrow \omega \pi^0$
 - → new background rejection method
 - → L_{max} rises from 3 @ 600 MeV/c to 5 @ 1940 MeV/c
 - \rightarrow extraction of the ω -SDM via full PWA
 - ightarrow strong alignment and oscillation of ho_{00} along the production angle
 - $\rightarrow \overline{p}p \rightarrow K^+K^-\pi^0$
 - → excellent description of the data
 - ightharpoonup extraction of the SDM for ϕ and K* possible
- PWA of BESIII data with the same PWA package
 - focus on radiative decays of charmonia
 - first promising results achieved