

ERC Advanced Grant PI: Prof. Dr. Eberhard Widmann

THE HYPERFINE STRUCTURE OF ANTIHYDROGEN

E. WIDMANN

STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS AUSTRIAN ACADEMY OF SCIENCES, VIENNA

MATTER-ANTIMATTER SYMMETRY

• COSMOLOGICAL SCALE:

asymmetry

• CPT VIOLATION

E. Widmann

• Microscopic: symmetry?

H·HFS

HYDROGEN AND ANTIHYDROGEN

3

Freitag, 14. Juni 13

CPT TESTS - RELATIVE & ABSOLUTE PRECISION

• ATOMIC PHYSICS EXPERIMENTS, ESPECIALLY ANTIHYDROGEN OFFER THE MOST SENSITIVE EXPERIMENTAL VERIFICATIONS OF CPT

E. Widmann

0000

HFS AND STANDARD MODEL

 $(i\gamma^{\mu}D_{\mu} - m_{e} - a^{e}_{\mu}\gamma^{\mu} - b^{e}_{\mu}\gamma_{5}\gamma^{\mu} CPT \& Lorentz$ $\frac{1}{2}H^{e}_{\mu\nu}\sigma^{\mu\nu} + ic^{e}_{\mu\nu}\gamma^{\mu}D^{\nu} + id^{e}_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0.$ **CPT & Lorentz violation** Lorentz violation

D. Colladay and V.A. Kostelecky, PRD 55 (1997) 6760.

GROUND-STATE HYPERFINE SPLITTING OF H^(BAR)

- spin-spin interaction positron - antiproton
- Leading: Fermi contact term

$$\nu_F = \frac{16}{3} \left(\frac{M_p}{M_p + m_e}\right)^3 \frac{m_e}{M_p} \frac{\mu_p}{\mu_N} \alpha^2 c \ Ry,$$

•magnetic moment of p

- previously known to 0.3%, 2012 Gabrielse Penning trap 5 ppm arXiv:1301.6310
- •H: deviation from Fermi contact term: ~ 32 ppm
 - finite electric & magnetic radius (Zemach corrections): 41 ppm
 - polarizability of p^(bar): < 4 ppm
 - few ppm theoretical uncertainty remain

$$\Delta\nu(\text{Zemach}) = \nu_{\text{F}} \frac{2Z\alpha m_{\text{e}}}{\pi^2} \int \frac{d^3p}{p^4} \left[\frac{G_E(p^2)G_M(p^2)}{1+\kappa} - 1 \right]$$

Freitag, 14. Juni 13

H·HFS

0 00

ASACUSA COLLABORATION @ CERN-AD

ASAKUSA KANNON TEMPLE BY UTAGAWA HIROSHIGE (1797-1858)

Atomic Spectroscopy And Collisions Using Slow Antiprotons

SPOKESPERSON: R.S. HAYANO, UNIVERSITY OF TOKYO

- University of Tokyo, Japan
 - INSTITUTE OF PHYSICS
 - FACULTY OF SCIENCE, DEPARTMENT OF PHYSICS
- RIKEN, Saitama, Japan
- SMI, Austria
- Aarhus University, Denmark
- Max-Planck-Institut für Quantenoptik, Munich, Germany
- KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
- ATOMKI Debrecen, Hungary
- Brescia University & INFN, Italy
- University of Wales, Swansea, UK
- The Queen's University of Belfast, Ireland

 \sim 44 MEMBERS ₇

E. Widmann

0

ANTIPROTON DECELERATOR @ CERN

Freitag, 14. Juni 13

HFS MEASUREMENT IN AN ATOMIC BEAM

- atoms evaporate no trapping needed
- cusp trap provides polarized beam
- spin-flip by microwave
- spin analysis by sextupole magnet
- low-background high-efficiency detection of antihydrogen

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

achievable resolution

- better 10^{-6} for T ≤ 100 K
- > 100 H^{bar}/s in 1S state into 4π needed
- event rate I / minute: background from cosmics, annihilations uptsreams

E. Widmann

00.00

POLARIZED H BEAM FROM "CUSP" TRAP

- First antihydrogen production in 2010
 - expectation: polarized beam

of Science

Freitag, 14. Juni 13

H-HFS E. Widmann

Freitag, 14. Juni 13

MUSASHI: p

•e+'

T RYAND

Freitag, 14. Juni 13

H·HFS

E. Widmann

SPIN-FLIP RESONATION

Außensensor

- f = 1.420 GHz, Δf = few MHz, ~ mW power
- challenge: homogeneity over $10 \times 10 \times 10 \times 10^{3}$ ($\lambda = 21 \text{ cm}$
- solution: strip line

strip line

Eingänge für die Mikrowellen

Vergoldete Kupfer-Beryllium Streifen zur Verbesserung der elektrischen Leitfähigkeit

E. Widmann

E. Widmann

17

SEGMENTED TRACKING DETECTOR

cosmic ray

Hodoscope 8 cm diam. 30 plastic scintillators 5x10 mm² length 15 cm 2x SiPM readout

E. Widmann

H^{bar} counter: 64 scint. + multi channel PMT

SIMULATION & DATA

G4 studies:

- simulation of \overline{H}
- trajectories in field
- background creation
- cosmics
- estimation of transition probabilities
- effect of homogeneities

1423.20

SAB 2013, May. 2013

MW frequency (MHz)

1423.22

1423.24

1423.18

simulation done at 2G, T=50K

cosmic events in the CPT detector (2012)

Chloé Malbrunot

H·HFS

SETUP TESTING DURING LS1

Hydrogen beam:

- Source of atomic hydrogen (microwave discharge)
- Permanent sextupoles create polarized hydrogen beam
- QMS detect GS hydrogen
- Choppers connected to a lock-in amplifier for noise reduction

permanent sextupole for initial polarization developed at CERN by TE-MSC-MNC 1.4T integrated field 10mm inner diameter Permendur/permanent magnet

hydrogen beamline developed at SMI

SAB 2013, May. 2013

HYDROGEN BEAMLINE

Setup will be transported to CERN in July 2013 to be coupled to the cavity and superconducting sextupole

SAB 2013, May. 2013

EXPERIMENTS IN AN ATOMIC BEAM

• Phase I (ongoing): Rabi method

Phase 2: Ramsey separated oscillatory fields

(FAR) FUTURE EXPERIMENTS

• PHASE 3: TRAPPED H

- Hyperfine spectroscopy in an atomic fountain of antihydrogen
- needs trapping and laser cooling outside of formation magnet
- slow beam & capture in measurement trap
- Ramsey method with d=1m
 - $\Delta f \sim 3 \text{ Hz}, \Delta f/f \sim 2 \times 10^{-9}$

M. Kasevich, E. Riis, S. Chu, R. DeVoe, PRL 63, 612-615 (1989)

E. Widmann

Freitag, 14. Juni 13

SUMMARY

- Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of CPT symmetry
- Complementary to IS-2S laser spectroscopy, competitive in absolute sensitivity
- Recent milestones in H production & trapping make the field enter the era of spectroscopy
- Time scale of precision experiments is 5-10 years

ERC Advanced Grant 291242 **HbarHFS** www.antimatter.at PI EVV

H·HFS

THE ASACUSA COLLABORATION

tomic pectroscopy nd ollisions sing low ntiprotons

ASACUSA Scientific project

- (1) Spectroscopy of $\bar{p}He$
- (2) \bar{p} annihilation cross-section

(3) **H** production and spectroscopy

The **H** team

University of Tokyo, Komaba: K. Fujii, N. Kuroda, Y. Matsuda, M. Ohtsuka, S. Takaki, K. Tanaka, H.A. Torii

RIKEN: Y. Kanai, A. Mohri, D. Murtagh, Y. Nagata, B. Radics, S. Ulmer, S. Van Gorp, Y. Yamazaki

Tokyo University of Science: K. Michishio, Y. Nagashima

Hiroshima University: H. Higaki, S. Sakurai

Univerita di Brescia: M. Leali, E. Lodi-Rizzini, V. Mascagna, L. Venturelli, N. Zurlo

Stefan Meyer Institut für Subatomare Physik: P. Caradonna, M. Diermaier, S. Friedreich, C. Malbrunot, O. Massiczek, C .Sauerzopf, K. Suzuki, E. Widmann, M. Wolf, J. Zmeskal

INPC 2013, Florence, June 2013

H·HFS