

The PAMELA experiment and antimatter in the Universe Mirko Boezio INFN Trieste, Italy

On behalf of the PAMELA collaboration

Leap 2013, Uppsala June 10th 2013

A Century of Cosmic Rays

PaMel

• Victor Hess ascended to 5000 m in a balloon in 1912

• ... and noticed that his electroscope discharged more rapidly as altitude increased

• Not expected, as background radiation was thought to be terrestrial. Extraterrestrial origin, confirming previous hints by Theodore Wulf and Domenico Pacini

•1934: CR association to SNe proposed on energetic grounds (Baade and Zwicky)

•Almost 80 years later evidence is still circumstantial

•Late 70's: Diffusive shock accelerations is proposed (Krymskii 77, Bell 78)

Height above sea level (km)

Pillars of the SNR paradigm

Particle escape

CRs IN SNR \rightarrow DIFFUSIVE SHOCK ACCELERATION, Q(E)~E^{γ}

PROPAGATION OF CRs IN THE GALAXY with D(E)~ $E^{\delta} \rightarrow$ n(E)~ $E^{-\gamma-\delta}$

P. Blasi, TeVPA 2011, Stockholm 2011

Cosmic-Rays' "Life"

J. Cronin , T.K. Gaisser & S.P. Swordy, Sci. Amer. 276 (1997) 44

Astrophysics and Cosmology compelling Issues

- Origin and propagation of the cosmic radiation
- Nature of the Dark Matter that pervades the Universe
- Apparent absence of cosmological Antimatter

The first historical measurements on galactic antiprotons

The first historical measurements of the p/p - ratio and various Ideas of theoretical Interpretations

CR antimatter

BESS(97)
■ BESS(99)

CR antimatter

10

Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics

PAMELA Collaboration

- Search for dark matter annihilation
- Search for antihelium (primordial antimatter)
- Search for new Matter in the Universe (Strangelets?)
- Study of cosmic-ray propagation (light nuclei and isotopes)
- Study of electron spectrum (local sources?)
- Study solar physics and solar modulation
- Study terrestrial magnetosphere

PAMELA apparatus

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

PAMELA detectors

Main requirements → high-sensitivity antiparticle identification and precise momentum measure

GF: 21.5 cm² sr Mass: 470 kg Size: 130x70x70 cm³ Power Budget: 360W

Resurs-DK1 satellite + orbit

- Resurs-DK1: multi-spectral imaging of earth's surface
- PAMELA mounted inside a pressurized container
- Lifetime >3 years (assisted, first time February 2009), extended till <u>end of satellite operations</u>
- Data transmitted to NTsOMZ, Moscow via high-speed radio downlink. ~16 GB per day
- Quasi-polar and elliptical orbit (70.0°, 350 km - 600 km) – from 2010 circular orbit (70.0°, 600 km)
- Traverses the South Atlantic Anomaly
- Crosses the outer (electron) Van Allen belt at south pole

Antiparticle Results

New Results

Internet States Automatic Automatic

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Antiproton to proton flux ratio

Using all data till 2010 and multivariate classification algorithms 20-50% increase in respect to published analysis

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Antiproton energy spectrum

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Cosmic-Ray Antiprotons and DM limits

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Searches for WIMP Dark Matter

P. Gondolo, IDM 2008

DM annihilations

DM particles are stable. They can annihilate in pairs.

DM annihilations

Resulting spectrum for positrons and antiprotons $M_{\rm WIMP}{=}\;1\;{\rm TeV}$

Cosmic-Ray Antiprotons and DM limits

D. G. Cerdeno, T. Delahaye & J. Lavalle, Nucl. Phys. B 854 (2012) 738 Antiproton flux predictions for a 12 GeV WIMP annihilating into different mass combinations of an intermediate two-boson state which further decays into quarks.

See also:

- M. Asano, T. Bringmann & C. Weniger, Phys. Lett. B 709 (2012) 128.
- M. Garny, A. Ibarra & S. Vogl, JCAP 1204 (2012) 033
- R. Kappl & M. W. Winkler, PRD 85 (2012) 123522

Cosmic-Ray Antiprotons and DM limits

M. Cirelli & G. Giesen, arXiv: 1301:7079 "Antiprotons are a very relevant tool to constrain Dark Matter annihilation and decay, on a par with gamma rays for the hadronic channels. Current Pamela data and especially upcoming AMS-02 data allow to probe large regions of the parameter space."

PAMELA trapped antiprotons

Positrons (and electrons) with PAMELA

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Positron to Electron Fraction

Using all data till 2010 and multivariate classification algorithms about factor 2-3 increase in respect to published analysis

Positron to Electron Fraction

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Positron Energy Spectrum

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

A Challenging Puzzle for CR Physics

A Challenging Puzzle for CR Physics

A Challenging Puzzle for CR Physics

P.Blasi, PRL 103 (2009) 051104; arXiv:0903.2794 Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated.

But also other secondaries are produced: significant increase expected in the p/p and B/C ratios.

Astrophysical Explanation: Pulsars

- Mechanism: the spinning B of the pulsar strips e⁻ that accelerated at the polar cap or at the outer gap emit γ that make production of e[±] that are trapped in the cloud, further accelerated and later released at $\tau \sim 10^5$ years.
- Young (T < 10⁵ years) and nearby (< 1kpc)
- If not: too much diffusion, low energy, too low flux.
- Geminga: 157 parsecs from Earth and 370,000 years old
- B0656+14: 290 parsecs from Earth and 110,000 years old.
- Diffuse mature pulsars

A Challenging Puzzle for CR Physics

P.Blasi, PRL 103 (2009) 051104; arXiv:0903.2794 Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated.

But also other secondaries are produced: significant increase expected in the p/p and B/C ratios.

D. Hooper, P. Blasi, and P. Serpico, JCAP 0901:025,2009; arXiv:0810.1527 Contribution from diffuse mature &nearby young pulsars.

A Challenging Puzzle for CR Physics

Positron Energy Spectrum

Subcut-off Electrons and Positrons

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Electron Observations

- High energy electrons have a high energy loss rate ∝ E²
 Lifetime of ~10⁵ years for >1 TeV electrons
- Transport of GCR through interstellar space is a diffusive process
 - Implies that source of high energy electrons are < 1 kpc away

Electrons <u>are</u> accelerated in SNR (as seen in γrays) Only a handful of SNR meet the lifetime & distance criteria Kobayashi et al (2004) calculations show structure in electron spectrum at high energy

Results from three ATIC flights

PAMELA Electron (e⁻) Spectrum

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Electron Spectrum and Positron Fraction

Modify the injection indices of GALPROP?

D. Grasso et al., Astropart.Phys. 32 (2009) 140; arXiv:0905.0636

Electron Spectrum and Positron Fraction

Pulsar Explanation

Some structure in the curve should eventually be seen for pulsars? (D. Grasso et al., Astropart. Phys. 32, 140, 2009).

10

500

Interpretation: DM I. Cholis et al. Phys. Rev. D 80 (2009) 123518; arXiv:0811.3641v1

- Propose a new light boson (m $_{\Phi} \leq \text{GeV}$), such that $\chi\chi \rightarrow \Phi\Phi$; $\Phi \rightarrow e^+e^-$, $\mu^+\mu^-$, ...
- Light boson, so decays to antiprotons are kinematically suppressed

What about heavy antinuclei?

• The discovery of one nucleus of antimatter (Z≥2) in the cosmic rays would have profound implications for both particle physics and astrophysics.

 For a Baryon Symmetric Universe Gamma rays limits put any domain of antimatter more than 100 Mpc away

(Steigman (1976) Ann Rev. Astr. Astrophys., 14, 339; Dudarerwicz and Wolfendale (1994) M.N.R.A. 268, 609, A.G. Cohen, A. De Rujula and S.L. Glashow, Astrophys. J. 495, 539, 1998)

Antimatter Search: 2006 limits

What about PAMELA & Antinuclei?

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

<u>Cosmic Rays in the</u> <u>Heliosphere</u>

INFN Istituto Nazionale di Fisica Nucleare

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Positron to Electron Fraction

Adriani et al, Astropart. Phys. 34 (2010) 1 arXiv:1001.3522 [astro-ph.HE]

Solar modulation

Time Dependance of the Proton Flux

Time dependence: p and e⁻ (preliminary!)

12/09

12/09

Positron to Electron Fraction

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Summary of PAMELA results

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

COSMIC RAYS PRODUCTION MECHANISMS

Balloon data : Positron fraction before 1990

PAMELA INTEGRATION in the RESURS-DK1 satellite

Subcutoff particles

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Antiproton Results

Cosmic-Ray Antiprotons and DM limits

Pamela

M. Cirelli & G. Giesen, arXiv: 1301:7079 "Antiprotons are a very relevant tool to constrain Dark Matter annihilation and decay, on a par with gamma rays for the hadronic channels. Current Pamela data and especially upcoming AMS-02 data allow to probe large regions of the parameter space."

Positron to Electron Fraction

Positron to Electron Fraction

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Antiproton to proton flux ratio

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

FERMI all Electron Spectrum

A. Abdo et al., Phys.Rev.Lett. 102 (2009) 181101 M. Ackermann et al., Phys. Rev. D 82, 092004 (2010)
Electrons measured with H.E.S.S.

F. Aharonian et al., A&A 508 (2009) 561

A Challenging Puzzle for CR Physics

Electron Spectrum and Positron Fraction

PAMELA&Fermi Electron (e⁻) Spectrum

Mirko Boezio, LEAP2013, Uppsala, 2013/06/10

Charge-Sign Dependent Solar Modulation

