

The Central Straw Tube Tracker In The PANDA Experiment

Peter Wintz (IKP - FZ Jülich), for the PANDA collaboration

11th International Conference on Low Energy Antiproton Physics, June 10-15, 2013, Uppsala, Sweden

Outline: PANDA - Straw Tube Tracker

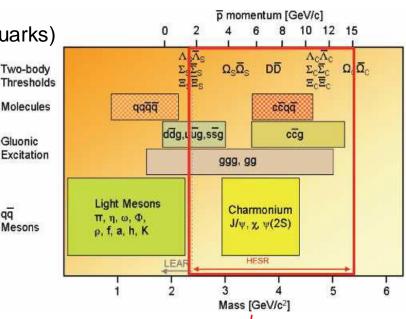
- PANDA physics
- Central Straw Tube Tracker (STT)
 - Minimal material budget
 - High-rate tracking and PID
 - Online event reconstruction (→ next talk)
- Test systems and results
- Simulation studies
- Summary

The PANDA Physics Program

 \rightarrow Talks by A. Gillitzer (Tue), A. Sanchez (Wed), M. Maggiora, B. Kopf (Thu)

PANDA investigates $\bar{p}p$ and $\bar{p}A$ annihilation in the charm quark mass regime

Two-body

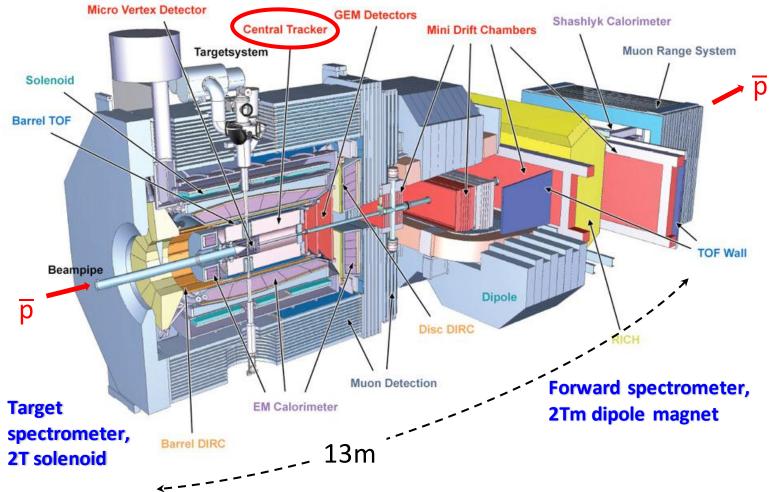

Molecules

Gluonic Excitation

Mesons

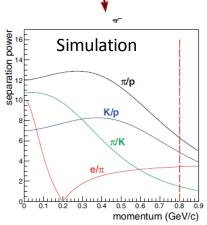
- Hadron spectroscopy (m, Γ, J^{PC}, BR)
 - Charmonium states
 - Open charm mesons (D-mesons)
 - Exotic states (glueballs, hybrids, multi-quarks)
 - Strange and charmed baryons
- Hadrons in nuclear medium
 - J/ψ absorption, D meson mass shift
 - Hypernuclei ($_{\Xi^{-}}^{A}Z$, $_{\Lambda\Lambda}^{A}Z$), YY-interaction
- Structure of the nucleon
 - Electromagnetic formfactors
 - Generalized Distribution Amplitudes
 - Transverse nucleon spin (full PWA)

PANDA Physics Performance Report arXiv:0903.3905 (216pp)



2.25 < √s < 5.47 GeV

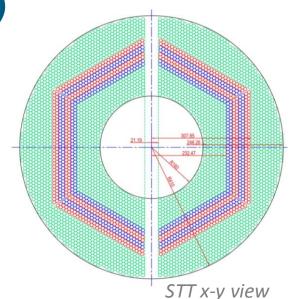
The PANDA Detector System In HESR → Talk by D. Calvo

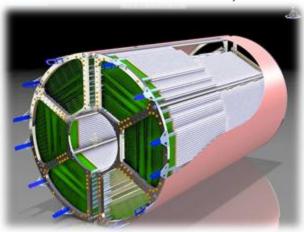


Tracking At PANDA

- Variety of event topologies, all particle species involved
 - particle multiplicities up to 6 and higher, on average ~150 tracks / 2µs
 - broad momentum range ~ 100 MeV/c 8 GeV/c
 - displaced vertices O(100µm) O(10cm)
- 4π solid angle coverage (PWA)
- High momentum & spatial resolution: σ_p/p~1-2%, vtx ~50μm
- Particle identification: $p/K/\pi < 1$ GeV/c (exclusively)
- Readout of (quasi-) continuous data stream
 - fast online track & event reconstruction, w/o t₀, evt. deconv.
 - flexible software triggering, specific reactions → data storage

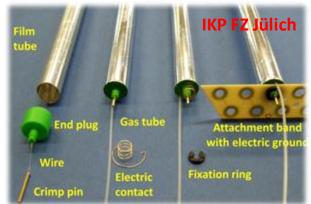
D.


→Tracking system: MVD (vertex) + Central Tracker (large-vol) + GEMs (forwd)

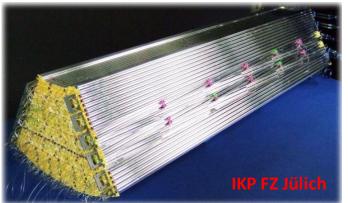


Central Straw Tube Tracker (STT)

- 4636 straw tubes in 2 separated semi-barrels
- 23-27 radial layers in 6 hexagonal sectors
 - 15-19 axial layers (green) in beam direction
 - 4 stereo double-layers: ±3° skew angle (blue/red)
- Volume: R_{in} / R_{outr}= 150 / 418 mm, L~ 1650 mm
 - Inner / outer protection skins (~ 1mm Rohacell/CF)
- Ar/CO₂ (10%), 2 bar, ~ 200ns drift time (2 T field)
- Time & amplitude readout
 - σ_{r_0} ~ 150 µm, σ_z ~ 2-3 mm (isochrone)
 - $\sigma(dE/dx) < 10\%$ for PID (p/K/ π < 1 GeV/c)
- σ_p/p ~ 1-2% at B=2 Tesla (STT + MVD)
- X/X_0 ~ 1.25% (~ $^2/_3$ tube wall + $^1/_3$ gas)



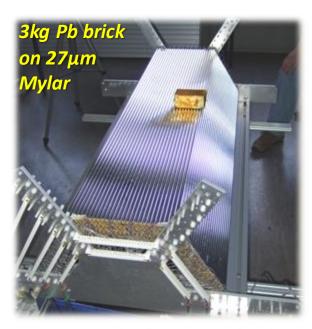
Straw Tubes

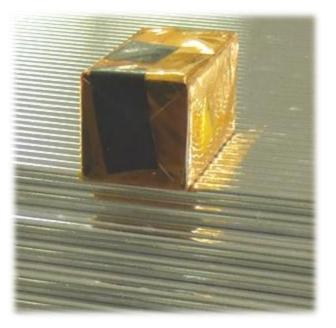

Material budget at lowest limit (2.5 g per assembled straw)

- thinnest Al-mylar film, d=27µm, Ø=10mm, L=1400mm
- thin-wall endcaps (ABS), wire fixation (crimp pins), radiation-hard
- self-supporting modules of pressurized straws (∆p=1bar)
 - close-packed (~20 µm gaps) and glued to planar multi-layers
 - replacement of single straws in module possible (glue dots)
- strong stretching (230kg wires, 3.2tons tubes)*, but no reinforcement needed

Straw components

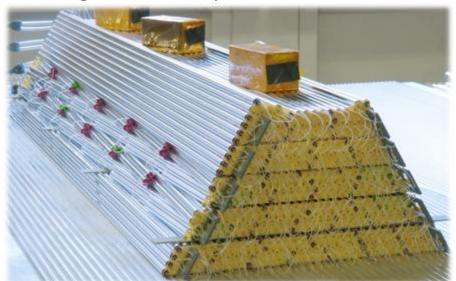
Full hexagon sector





Self-Supporting Straw Modules

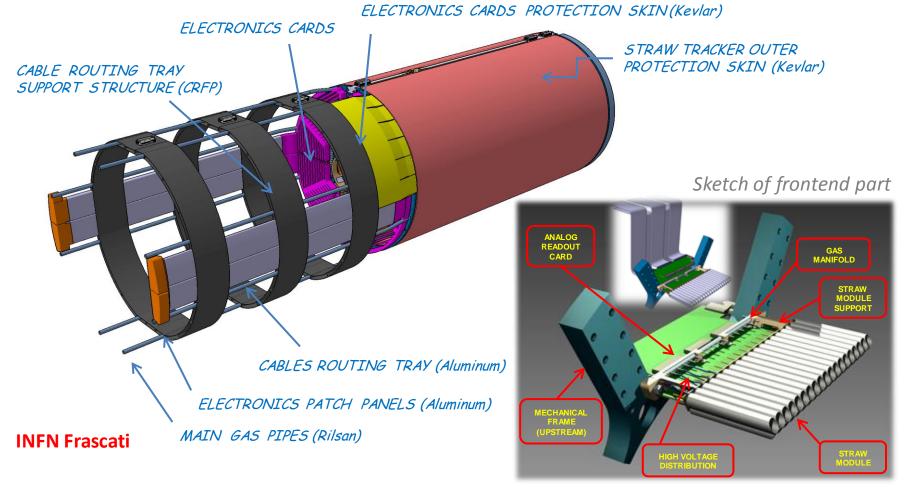
- .. technique first developed for COSY-STT (planar double-layers, in vacuum!)
- .. upgraded for PANDA-STT (barrel geometry with 3d stereo-layers, quad-layers)


Pressurized, close-packed straw layers show a strong rigidity ...

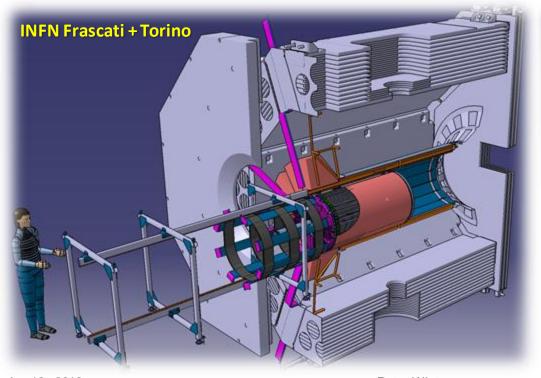
STT Mechanical Prototype

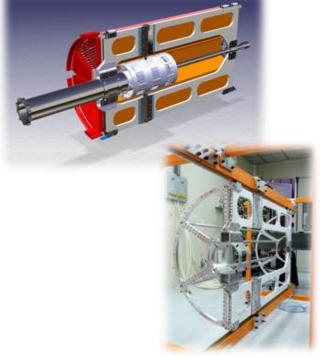
Full hexagon sector, overpressure 1 bar

Even more confidence in the self-supporting straw modules through the years ..


STT mechanical prototype, one semi-barrel

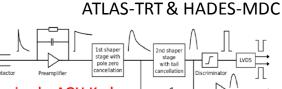
Mechanical Frame Structure





Final Assembly Scheme

- Central frame structure to support all central components
 - beam pipe + MVD + STT semi-barrels
- Rail system for insertion into the PANDA target spectrometer



STT Readout

2 Concepts to measure drift time + signal amplitude (for dE/dx)

- Amplitude sampling: LE-Time + Q
 - Amplifier-shaper boards frontend at detector
 - Pulse sampling by FADC (240 MHz), pulse analysis and readout by FPGA
- Amplitude by time-over-threshold*: LE-Time + ToT(Q)
 - Ampl.-Shaper-Discr. (ASIC-chip) frontend at detector
 - Time Readout Boards (TRB), TDC in FPGA
- Requirements
 - ~ 2fC sensitivity (thresh. ~ 1.2×10⁴ e⁻)
 - ~ 1ns time resolution, ~ 200ns drift time range for Ar/CO₂(10%) at 2 T field
 - < 10% dE/dx resolution for PID
 - Hit rates: ~ 800 kHz/straw (max), ~ 400 kHz (avg.) at full luminosity
- **FEE must be radiation-hard**, low power consumption, minimum space

*ToT used for PID at

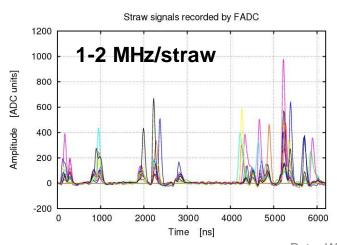
Base line holder

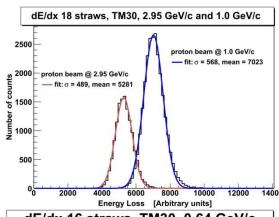
Output buffer

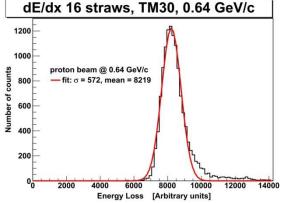
Test Systems

- STT semi-barrel (1:1) for assembly techniques
- Mechanical central frame structure on rail system

- STT detector in COSY-TOF experiment
 - "Global" test system for PANDA-STT (straw technique)
 - Spatial resolution: σ ~ 140μm (2700 straws)
 - Operated (4 yr) in evacuated time-of-flight barrel (25m³)
 - Leakage on permeation level (molecular flow thru mylar)
- Straw setups for in-beam tests (p/d-beam)
 - Aging tests done, charge loads ~1.2 C/cm (~ 5yrs PANDA)
 - High-rate readout tests ongoing, 1-2 MHz/straw
 - Beam momentum 0.6 3 GeV/c (dE/dx range ~ 3× mips)

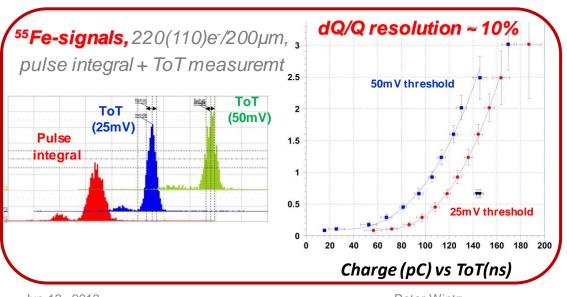


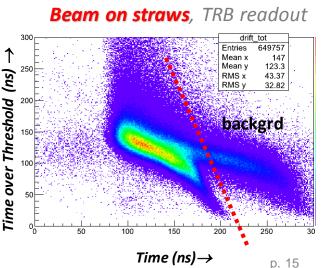




FADC Energy-Loss Measurements

- dE/dx resolutions measured in beam with FADC
 - $\sigma_{dE/dx} = 7.0\% 9.3\%$ (0.6, 1.0, 2.9 GeV/c protons)
 - 30% truncation factor (Landau-tail)
 - < 19 straw hits per track → 25 layers at PANDA-STT
- σ_{dE/dx} ~ 7.0 % feasible with PANDA-STT
- σ ~ 150µm spatial resolution measured
- High-rate FPGA analysis & readout ongoing

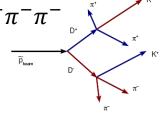


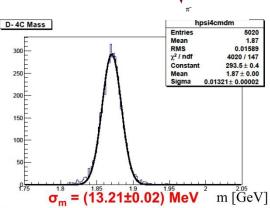


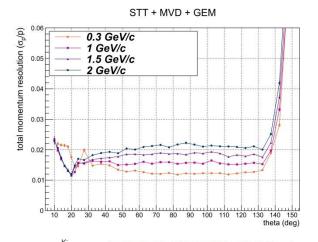
Time-Over-Threshold Method

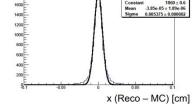
- ASIC testversion with analog out, first in-beam test 2012
 - gain (3-24mV/fC), peak time (20/40ns), ion tail cancell., BL stability, ...
- Next ASIC version in production: 100 chips× 8 ch, few param. optimisations
- Calibration of ToT \leftrightarrow dE/dx with ⁵⁵Fe-source (simple) and beam protons
 - need >4 different beam momenta to get ToT \leftrightarrow dE/dx relation and resolution

Simulation Studies

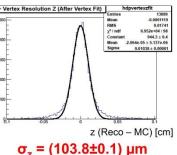

- Single track simulation (MVD+STT+GEM, B=2T)
 - Momentum resolution 1-2% for θ < 140°
- Test of tracking system with benchmark channels


•
$$\overline{p}p \rightarrow \pi^+\pi^-\pi^+\pi^-$$


•
$$\overline{p}p \rightarrow \eta_c \rightarrow \phi \phi \rightarrow K^+ K^- K^+ K^-$$


•
$$\overline{p}p \to \Psi(3770) \to D^+D^- \to K^-\pi^+\pi^+K^+\pi^-\pi^-$$

 vertex resolutions and reconstructed mass of D-mesons



 $\sigma_{x} = (53.75\pm0.02) \mu m$

D-meson reconstruction numbers

Acceptance	24.5 %
Total Reconstructed	5.0 %
Vertex Resolution (xy)	54.5 µm
Vertex Resolution (z)	104.3 µm
Mass Resolution	13.1 MeV

Summary

- The PANDA-STT provides a complete measurement of charged particles: space, momentum, pid, (time)
- Test measurements and benchmark channel simulations confirm the required performance
- Technical design report of the STT was approved in 2012
- Funding process will be completed soon (Germany, Italy, Poland, Romania)
- Straw mass production during 2013-2016 (> 50% spares)
- Electronic readout optimisation in parallel, beam test times at COSY
- Comissioning of the detector setup with beam in 2016/2017 at COSY
- Shipping to FAIR and installation in PANDA 2017

Technical design report of the PANDA-STT, Eur. Phys. J. A49 (2013) 25