

Overview of NUSTAR

Thomas Nilsson, NUSTAR BR chair ECE Meeting – 2012-11-19

NUclear STructure Astrophysics and Reactions

Open questions

- What are the limits for existence of nuclei?
 - Where are the proton and neutron drip lines situated?
 - Where does the nuclear chart end?
- How are complex nuclei built from their basic constituents?
 - What is the effective nucleon-nucleon interaction?
 - How does QCD constrain its parameters?

How does the nuclear force depend on varying proton-to-neutron ratios?

How to explain collective phenomena from individual motion?

Which are the nuclei relevant for astrophysical processes and what are their properties?

How to get answers?

Study the properties and the behaviour of exotic nuclei!

Ground state mass, binding energy, spin, parity...

Excited states energy, spin, moments, transition probability...

Decay *lifetime, energy, modes...*

Reaction *kinetics, energy, constituents...*

Investigate systematically many isotopes far off stability

NUSTAR - The Project

Super-FRS	RIB production, identification and		
	spectroscopy	The Approach	
DESPEC	γ-, β-, α-, p-, n-decay spectroscopy	Complementary	
HISPEC	in-beam γ spectroscopy at low and intermediate energy	measurements leading to consistent	
ILIMA	masses and lifetimes of nuclei in ground and isomeric states	answers	
LASPEC	Laser spectroscopy	The Collaboration	
MATS	in-trap mass measurements and decay studies	> 800 scientists 146 institutes	
R ³ B	kinematically complete reactions at high beam energy	38 countries	
ELISE	elastic, inelastic, and quasi-free e—A scattering	The Investment	
EXL	light-ion scattering reactions in inverse kinematics	73 M€ Experiments	
	kinematics	73 M€ Experiments	

NUSTAR Week Kolkata Oct 2012

Existing research opportunities at GSI

SUPERconducting FRagment Separator

NUSTAR - The Facility

LEB - Experiments with slowed and stopped beams

HISPEC/DESPEC - foreseen instrumentation

HISPEC

- LYCCA heavy ion calorimeter with ToF capability
- AGATA gamma spectrometer
- HYDE light particle array
- NEDA Neutron detector array
- EDAQ dedicated electronics and DAQ based on several branches
 DESPEC
- AIDA active implantation device
- MONSTER neutron ToF array
- BELEN neutron detecion array
- DTAS Decay Total Absorption Spectrometer
- DESPEC Ge Array gamma spectrometer
- FATIMA Fast timing array

Last DESPEC setup (2011): BELEN 4π neutron detector:

C. Domingo-Pardo et al, "Measurement of β-delayed neutrons around the 3rd r-process peak". Newly identified nuclei for beta delayed neutron branch determination Schematic view of the ³He counters of BELEN.

Decay Total Absorption Spectrometer (DTAS)

HISPEC/DESPEC Evolutionary timeline

2004-2005: RISING In-Beam

EUROBALL Cluster plus small Si-Csl array

2006-2009: RISING Stopped Beam

EUROBALL Cluster (plus active Si-stopper)

2010-2011: PreSPEC In-Beam phase 1

EUROBALL Cluster plus LYCCA-0

2012-2013: PreSPEC In-Beam phase 2 (= HISPEC-0)

AGATA plus LYCCA-1

2014-2016: PreSPEC Decay

(= DESPEC-0)

2017+:

(commissioning) experiments

MATS/LASPEC at the LEB

Common beam line for MATS/LaSpec Commissioning of the gas cell at the FRS (GSI)

Cryogenic

stopping cell

CE Meeting -2012

Diagnostics

unit

On-line test using ²³⁸U projectile fragments produced at 1 GeV/u at the FRS in October 2011 and July/August 2012

Beam from FRS

- Ion survial and extraction efficiency ~ 50%
- Extraction times ~ 25 ms

MR-TOF-MS commissioned on-line First direct mass measurements at GSI with an MR-TOF-MS, including

Time-of-flight

mass spectrometer

 213 Rn (T_{1/2} = 20 ms)

Courtesy of W.R. Plaß

MATS day-1 experiments Comparison with TRIGA-TRAP

D. Rodríguez et al., Eur. Phys. J. Special Topics, 183 (2010) 1-123

LaSpec at FAIR: future measurements

Experiments with slowed and stopped beams

NUSTAR - The Facility

Reactions with Relativistic Radioactive Beams

Status

Major achievements

Large-acceptance dipole GLAD

- Cold mass ready and inserted in test cryostat at Saclay
- Final cryostat in construction
- Delivery of magnet to GSI end of 2013

Neutron Detector NeuLAND

- Design finalized modular active detector of 3000 scintillator bars; 250x250x300cm³ active volume
- TDR submitted to FAIR in Nov 2011 (in review process)
- Experiment with mono-energetic neutrons from deuteron breakup in Nov 2012: 200 modules (400 PM channels) in final design mounted
- Construction of 20% detector in 2013/2014

RB

Status

Major achievements:

Photon- and particle calorimeter CALIFA

- Design of barrel part finalized
 1952 CsI crystals with APD readout
- TDR submitted to FAIR Nov 2011 (in review process)
- R&D on forward end-cap ongoing phoswich concept of LaBr₃-LaCl₃ crystals

Target Recoil Tracking Detector

- Design finalized
- Construction started
- Project fully funded and lead by UK consortium

Tracking Detectors

Thin large-area fiber detector: Prototype with 0.25 mm ⁻¹⁵ pitch, readout by PSPM and NXCYTER based frontend²⁵ successfully tested with Sn beam in 2012

- 2012 Test of NeuLAND modules with mono-energetic neutrons Installation of infrastructure in Cave C for GLAD (He cryo-system, power supply)
- 2013 Delivery and installation of superconducting dipole GLAD
- 2014 Installation of 20% detectors NeuLAND and CALIFA Commissioning and physics run
- 2015 Construction and installation of detector components
- 2016 Commissioning of full R3B setup and first physics run
- 2017 Installation of experimental setup at FAIR site including superconducting triplet
- 2018 Commissioning and first experiments at Super FRS

Experiments in 2018 will make use of uniqueness of R³B:

- Reactions at high beam energies up to 1 GeV/nucleon
- Tracking and identification capability even for the heaviest ions
- Multi-neutron tracking capability, high-efficiency calorimeter

Experiments possible for the first time:

- 4 neutron decays beyond the drip-line: e.g. ⁴n, ²⁸O
- Kinematically complete measurements of quasi-free nucleon knockout reactions
- Electric dipole and quadrupole response of Sn nuclei beyond N=82
- Electric dipole and quadrupole response of neutron-rich Pb isotopes

NUSTAR - The Facility

CR, NESR Storage Rings

CR perspective view

Potential for new masses with ILIMA

from Yu.A. Litvinov

ToF Detection

How to operate in a ring without an electron cooler ?

 \rightarrow Measure velocity and also position simultaneously with two ToF detectors.

Status NUSTAR TDRs

PSP-code	Description	Status	expected	
LEB Super-FRS				
1.2.1.1	Slow beamline and spectrometer		06/2015	
1.2.1.2	Stopping cell, extraction, cooling, beam-distribution system, and electrostatic beamlines		06/2015	
1.2.1.3	Laser ion source		06/2015	
HISPEC/DESPEC				
1.2.2.9	HYDE charged particle detectors for reaction studies (HISPEC)		12/2012	
1.2.2.10	LYCCA charged particle detector (50-200 A·MeV) (HISPEC)	approved		
1.2.2.11	Plunger (HISPEC)		12/2012	
1.2.2.13	DSSD implantation and decay detector (AIDA) (DESPEC)	approved		
1.2.2.14	DESPEC high resolution g-detector		01/2013	
1.2.2.15	Fast timing (FATIMA)		12/2014	
1.2.2.16.1	BELEN (DESPEC)		12/2012	
1.2.2.16.2	MONSTER		12/2012	
1.2.2.16.3	NEDA		12/2012	
1.2.2.17	Total absorption spectrometer (DTAS) (DESPEC)	submitted		

Status NUSTAR TDRs (cont)

MATS			
1.2.3.1	Beamline		
1.2.3.2	Off-line ion source		
1.2.3.3	RFQ and switchyard		
1.2.3.4	EBIT		
1.2.3.5	q/A selection		
1.2.3.6	Preparation Penning Trap		
1.2.3.7	Precision Penning Trap		
1.2.3.8.1	Detectors TOF-MS	approved	
1.2.3.8.2	Detectors FT-ICR-MS		
1.2.3.8.3	In-trap conversion electron spectroscopy		
1.2.3.9	Control system		
1.2.3.10	General Control and safety equipment		
1.2.3.11	Spares		
1.2.3.12	Tape station		
1.2.3.13	MR-TOF-MS		
LaSpec			
1.2.4.1	Switchyard		
1.2.4.2	Collinear Ion Beamline		
1.2.4.3	Optical Pumping		
1.2.4.4	b-NMR	approved	
1.2.4.5	RILIS		
1.2.4.7	Laser Housing		
1.2.4.8	Data Acquisition		

Status NUSTAR TDRs (cont)

R ³ B				
	R3B Phase 1			
1.2.5.1.1.1	Quadrupole triplet	approved		
1.2.5.1.1.2	Large-acceptance dipole	approved		
1.2.5.1.2.1	Tracking detectors		06/2013	
1.2.5.1.2.2	Large-area ToF wall		12/2013	
1.2.5.1.2.3.1	Gamma spectrometer - barrel (CALIFA)	submitted		
1.2.5.1.2.3.2	Gamma spectrometer - forward endcap (CALIFA)		12/2014	
1.2.5.1.2.4	Target recoil detector		12/2012	
1.2.5.1.2.5	Neutron ToF spectrometer (NeuLAND)	submitted		
12512	Vacuum systems (beam pipes, detector chambers,		12/2012	
1.2.3.1.3	big chamber behind magnet, pumps)			
1.2.5.1.4	DAQ electronics (VME systems, computers and		12/2012	
	cables)			
1.2.5.1.5	Infrastructure		12/2016	
	R3B Phase 2			
1.2.5.2.1	Spectrometer		03/2016	
1.2.5.2.2	Tracking detectors for spectrometer		03/2016	
1.2.5.2.3	Active target		09/2013	
ILIMA	•	•		
1.2.6.3	Schottky pick-ups		01/2014	
1.2.6.4	Time-of-flight detectors		01/2015	
1.2.6.5	Decay detectors		01/2015	

NUSTAR funding for MSV: 85% (secured+applied+EOI)

Beyond MSV: Details of the EXL setup

Intermediate storage ring activities/"Green Paper"

Elastic p-scattering off ⁵⁶Ni (proposal E105)

Cryring at the ESR

Realization of an RIB electron collider setup The ELISe experiment Haik Simon • GSI / Darmstade

Quasielastic (spectroscopic factors) 10^{29} cm⁻² s⁻¹ NESR Inelastic (e.g. GR studies) = $10^{28} \text{cm}^{-2} \text{s}^{-1}$ charge distributions $10^{27} \text{cm}^{-2} \text{s}^{-1}$ 126 $10^{26} \text{cm}^{-2} \text{s}^{-1}$ 10^{25} cm⁻² s⁻¹ charge radi 10^{24} cm⁻² s⁻¹ 10^{23} cm⁻² s⁻¹ 10^{22} cm⁻² s⁻¹ **ELISe Collaboration** NIM A637 (2011) 60 Ζ GPA Berg et al., 20 Possible Plácement at the mod. NIM A640 (2011) 123 ESR NIM A659 (2011) 198 P. Shatunov, Internal report \square (2012)GSI E-linac

Uniqueness of NUSTAR@FAIR

Synchrotron-based RIB production for:

- High-energy Radioactive Beams (≤1.5 GeV/u)
 - Efficient production, separation, transmission and detection aided by Lorentz boost
 - Access to also the heaviest nuclei without charge-state ambiguities
 - Large range of attainable reaction mechanisms
- Storage rings
 - Mass measurements and beam preparation/manipulation
 - Isomeric beams
 - Novel experimental tools

Combined with:

- Wide range of state-of-the-art instrumentation
 - Strong evolution from existing programmes

Status

The NUSTAR Project aims to study exotic nuclei...

The landscape of possible nuclei

ECE Meeting – 2012-11-19

Physics subject

to understand the formation of the elements and to finally describe the atomic nucleus

Instrumentation

a multitude of novel particle and radiation detectors and set-ups with sophisticated EDAQ systems are being prepared

Perspective

First experiments in early implementations are already operational at GSI and other labs.

NUSTAR will be in time to produce first results at FAIR!

...and is well under way