PATTERN

NEURAL §

¥
r— 57
e .

> g

L

e

%8
"R
(AR

- LA

{
e ¥

o

RECOGNITION

NETWORKS

weights
inputs e
Xy e—{(Wp;)
activation
functon
net input

activation

transfer
function
0;
threshold T

GOALS AND REMARKS

The goal of this work is to implement a new version of the pattern
recognition for the whole central tracker (STT+MVD) using a neural
network (NN).

According to its performances, this new pattern recognition could be
used in combination/addition/alternative to the current one, developed
by Gianluigi Boca.

As the pattern recognition is always a subtle matter, it could be good
to have more and different approaches rather than only one.

Important and general remark: this work is still on-going, this
presentation is meant to show the method I'm using and the
preliminary results obtained so far.

I'm new with these method and still in a learning phase, so any
feed back, criticism, observation is highly welcome!

WHICH KIND OF NEURAL NETWORK?

Neural algorithms are a “world”, here I'm following the approach
already tested by a group belonging to ALICE experiment:

“Combined tracking in the ALICE detector” NIM A 534 (2004) 211-

216 by A. Badala, R. Barbera. G. Lo Re, A. Palmeri, G. S. Pappalardo, A.
Pulvirenti, F. Riggi

They developed an artificial neural network for the ALICE Inner
Tracking System for high transverse momentum (p { > 1 GeV),

following the so called Denby-Peterson model with a
Hopfield NN.

The idea is to try this method in the Panda tracker, with proper changes
to adapt it to our case.

They used this method for 3-d hits coming from their microvertex
detectors (pixels and strips) but not for straw tube hits.

Can it work also for straw tubes?

In the following slides first we quickly show the method, then we look at
our preliminary results obtained. 3

The Artificial Neuron

The basic unit of these techniques is the artificial neuron

The artificial neuron can be seen as

an information processing unit made up by:

« Connections or connecting links or synapses :
Each connection has a weight which modifies

the input signal. Typically a signal X;j
at the input of neuron k is multiplied
by the weight wk;j

also a hias to the sum

An adder which sums the outputs coming from
each synapse so a linear combiner. It might add

An activation function which, in the simplest form,
IS a threshold function like the Heaviside function

Bias
- bk
X
Activation
%, (“/\ function
v
!nput_‘:) | k o) Output
signals \ Yi
Summing
junction
'rm
h- W
Synaptic
weights

This function takes the adder output and gives the

eventual neuron output.

/ i
U; = Ewijj
j=1

Mathematically

=<

Vi = @lug + by)
g

\

. where ¢ can be ¢(v) = {

S

Figure taken from “Neural Networks

A Comprehensive Foundation” by

S. Haykin, Prentice Hall 1999 p. 11

ifo=10
ifv <0

1
0

Heaviside step function

4

Activation functions

In analogy with the real, biological neurons, the artificial ones will work together and
depending from the type of connections one will have different types of networks. But
before looking at the connections let's recall the some common activation functions

1.2 ——

Heaviside step functlorg) 1 ifoz0 T) _
v) = . b6k]
¥ 0 ifv<O ol |
Here the neuron output is either 0 OFF or 1 ON [L | l
I T R
DISCRETE/DIGITAL OUTPUT -
Piecewise linear function | .
1, V= +% Lr
i 1 0.8 - .
e(v) = { v +§Z>’U:>—E 0.6 _
4 - -
0, p= —! 0zt .
2’ n 1 1
-2 -15 = 1 1.5 2

Here we get an output between [0,1] »
CONTINUOUS OUTPUT

Sigmoid or logistic function 1.2 -
1
tp(‘U) = 0.6 -

1 + exp(—av) na

where a is the so called slope parameter ob— A 1

Here we get an output between [0,1] Figure taken from “Neural Networks
i i A Comprehensive Foundation” by
This one is the most common S. Haykin, Prentice Hall 1999 p. 13

Other relevant activation functions

Other common choices for the activation function are /

1 ifv>0
Signum/sign function ¢@)=< 0 ifv=0
-1 ifv<0

A y=tanhg(n)

-1 ______________________

/ Hyperbolic tangent function
0

¢(v) = tanh(v)

1
Y

____________________ _1

A2
— arctg g(n)

Inverse tangent function

Q(v) = % arctan(v)

___________________ -1
Figure from the book

“Neural Networks Theory” NOTE that these ones are antisymmetric or

Alexander l. Galushkin odd functions
(2007) Springer-Verlag p. 40

A\

From the neuron to the network

Note that some of these functions have discrete output, others
continuous, some have non negative output, others also negative.

Some are antisymmetric @(-v)=- @(v): in some network architectures
this antisymmetric property results in better convergence.

In general the choice of the optimal activation function is dependent on
the network architecture and on the concrete problem to be solved.

Once neurons are given how do we connect them?

One option is the so called Hopfield network

In a Hopfield Network each neuron interacts with any other neuron,
excepting itself, in a symmetric way i. e. Wjk =Wkj and wijj =0

unit 1

With only 3 neurons Single, symmetric

we could represent it bidirectional connections

by the simple graph "z wis between each unit (neuron)
here we have 3

Figure from the book . N _
“Neural Networks” xz wa % totally coupled” units -

R. Rojas (1996) Springer-Verlag unit 2 unit 3

The Hopfield NN

Single, symmetric, bidirectional connections between each unit (neuron)
means that there is NO HIDDEN LAYER, NO SELF-FEED BACK, which
are features that may be found in other networks types.

Usually this kind of network is classified as a single layer network.

Note that since the connections are bidirectional i. e. neuron | is connected
to neuron k but also k is connected to |, this is already a recurrent network,
as during the update process the output of one neuron goes into the input
of another neuron, which is feed back by definition. But it is not allowed self
feedback, I. e. the output of each neuron does not input itself.

In the following we restrict to this kind of network.

It is interesting to observe that for the Hopfield Network it makes sense to
define a kind of energy function. This is a proper function of the network
outputs which is minimized (or maximized) when the network converges.
The formal analogy to the physical energy is clear. The energy of the
network gives a sort of index of convergence of the network.

However one must pay attention to the local minima

It is interesting to observe that in the case of a Hopfield NN the energy function is a
quadratic form as a function of the network state, in analogy with the physical energy 8

The Denby Peterson Model

Denby and Peterson first applied the Hopfield method to pattern recognition studies (for the
reference to the articles, see the last slide)

The main idea is that two hits are a neuron

From the hits, the neurons are created according to all the possible
combinations (here some cuts can be added to exclude distant or unreasonable neurons,
thus reducing the number of neurons).

The network, after some update cycles, will minimize (or maximize) the
energy function and some neurons will result in higher activation values.
These will be the “good” neurons, from which one can extract the good hits.

So, eventually, once the network is properly updated, one can start from a hit, look at
the best neuron which contains this hit, then this neuron will tell which is the second
hit linked to the first hit, then you look at this latter hit, which is the best neuron
containing it, then again you get another hit and so on.

The energy function should be such
that the cases like 1 and 2 should be
disadvantaged, while case 3 should be
advantaged.

This can be done with proper synaptic
weight related to the cosine (sine) of

Figure from
Mankel's review
see reference

in the last slide

the angle @ |
BAD NEURONS by looking at the arrows n_otlce
GOOD NEURONS that case 1, 2 are bifurcations,

whereas case 3 is not

Energy function

A typical energy function is the following (see ref: Mankel and G. Stimpfi-
Abele, L. Garrido)

] — cos™ #;; 2
E = _E Z 5‘,';_- n d-fﬂ 5,‘455“ T %(}’ Z 5,‘1'5” T Z S,'J,‘S;U' T %5 (Z SM — N)
1] J 1] k1
where Sjj is the neuron activation value (track segment /)
Oijjl is the angle between two track segments
djj Is the track segment length (distance between hit i j)
N is the number of track hits
a, 0, m are model parameters to be tuned

The first energy term accounts for the potentially well connected neurons i. e.
neurons like (i,)) (j,k) with i# and jzk (note Kronecker's delta in the formula). This
are possible good tracks to be weighted properly accoding to the angle.

The second energy term instead accounts for alternative or
competing paths: we have here either the same starting hit or the
same ending hit, combinations like (i,j) & (i,k) or (i,j))& (k,j).

These corresponds to bifurcation terms and so they typically
have an opposite signh with respect to the first energy term.

1-2 & 2-3 are well connected 1-2 & 1-5 is a bifurcation

10
The third energy term takes into account the number of track hits.

ANN in Alice

The neural network implemented by Pulvirenti and others for ALICE follows
the logic explained in the previous slides.

In particular

e It is a Hopfield Denby Peterson network

* The synaptic weights are chosen in order to favour the well-aligned pairs
of segments (like case 3 of slide 9)

* The neurons are initialized with random activation value

 In each updating step a neuron receives a gain (positive) contribution for
the good sequenced pairs of hits that is from the good neurons, and a
cost contribution (negative) for the bad ones. It is a symplified version of
the energy formula shown in the previous slide.

» After some (5-10) updating cycles, the neurons with better activation value
are chosen, and the activation must be greater than a given threshold

* The tracks are made with the good neurons by looking recursively at the
hits pointed by them

Moreover

* In order to reduce the number of neurons and make the algorithm faster
only hits on adjacent layers are considered

e Other cuts are used such as divide the plane in azimuthal sectors and
consider only the hits belonging to a single sector alone, and repeat the,
procedure for each sector.

Let's try it in Panda: simple events with MVD 3D

By using EVE 3d event
display in a single macro, lines are the reconstructed track

let's show some events.

This is a very simple event,
with 3 tracks and an isoated
hit.

The red points are the MVD
points, the blue lines are

the reconstructed pattern

recognition “tracks”
obtained by the neural
network

Note that the bottom isolated

point is not associated to any

track which is correct.

~ 50 neurons were created 1 GeV muons
and few (4-5) iteration cycles 1, these simple cases it's easy, but...
are enough - fast in these

cases _ _ : 2
Note that in this approach no specific analitic track model is used

Let's try it in Panda: simple events with MVD 3D

1 GeV muons

In this case it happens that lines are the reconstructed track
the 4 MC tracks are properly lines are the MC track

reconstructed but some hits

are missing In the

reconstructed tracks. These hits are not properly
assigned to the recotrack

Consider that after the end of -«

the activation cycles the

neurons have some

activation value and typically

one sets a cut in order to

discard bad neurons with a

small activation value - the

hits which are lost had a too

low activation value - the

network is not optimized!

Typical problem | found many times

Let's try

1 GeV muons

Here I'm using the STT tube
centres BIDIMENSIONAL
(x,y) coordinates.

Drift circles are displayedi
but not used. Skewed tubes
are not considered

The blue lines are the
reconstructed segments
joining the tube centres.
Here ~ 300 neurons are
created: GLOBAL distance
and phi angle cuts are
added in order to reduce the
total neuron number

The neurons are created
inside “sectors” like this:

in Panda: simple events with STT 2D

MC points light cyan boxes

/

i0yrg or nron2t0'0"0 08

Mvd Points
/(displayed but

not used)

" Blue lines — reconstructed
tracks joining the stt centres

Q

@

RO;
i -
Drift circles + centres (red points)

B
Orb
Ll

Simple events with STT, let's look in more detail

This is the zoom of the previous
event for 2 tracks

Notice that the NN is looking for
“staight” tracks, i. e. kinks are
strongly discouraged, but some
small kinks may be allowed, if
the hit distance is small

This is due to the “distance”
term inside the energy function

—cos™ 8.

I'S -.III |':.' —!-I” q " 5||.',I _r

e T

only after adding it | could
reconstruct such events properl

Fine tuning of the parameters
IS crucial for optimizing the
performances

Notice that some hits
are still missing

MC points light cyan boxes
Drift circles + centres (red points)

Missing hits
(hits not found
by the neural
network)

Blue lines - reconstructed
tracks joining the stt centres

Missing hits
(hits not found
by the neural
network)

A typical event
obtained with
Gianluigi Boca's
signal + background
mixing procedure

In the current
implementation

the Neural Network
iIs NOT working with
these events, but
work is In progress.
There is no
fundamental reason
for it should not
work, but one has
to understand if it is
better or worse than
the other methods

But ... in real life...

jelalalslete o

Importance of the cuts while creating neurons

It's very important to set properly the cuts when creating the neurons and the synapses.
Too many neurons means waste of computing time and redundancy in connections.
In particular it's important to look carefully at the geometrycal topology of our hits.

Naive option: the same length and angle cut for all neurons — two hits are allowed to make
a neuron iff they have a distance not more than some value and an angular variation not more
than some other value. This means to divide the x-y plane in r-phi sectors in which neurons are
created.

BUT since, actually, we have an outer region of unskewed tubes, then an “empty” space
(actually filled by skewed tubes) and eventually an inner region of unskewed tubes, if one
chooses a global distance cut, one is obliged to put a high value (like 12 cm) in order to
overcome the “empty” region - this results in too many neurons!

It's wiser to put different, “local” distance cuts according to the place where the hit is
created, so that ONLY the neurons containing hits around the “empty” region are allowed to
have a big distance, the other neurons are always small.

With this local cuts, for example in the previous event the number of neurons is reduced by a
factor 2 and the computing speed by a factor 4 (in my laptop).

)) I i . |
Recostruction with global cut Recostruction with local cuts: BETTER!

For this track also the “hit efficiency” is improving (more hits associated to the track)

Efficiency and simulation times so far

By defining the “track efficiency” as

number of tracks correctly identified
number of MC tracks

where for “correct” track we consider tracks with no mistake on hits —i. e. no hit is
associated to the wrong track — and at least 80% of hits properly associated — . e.
maximum 20% of hits may be missing, with 4 muons with p=1 GeVlc, ¢<[0,360]

3 €[85,95] we get:

Efficiency STT ONLY 82%
Efficiency MVD ONLY 68%

Please consider these values as preliminary and to be improved
by tuning the NN parameters

To understand these values take into account the different features of MVD hits vs STT hits:

4 muons in STT case are usually quite well separated in space and have ~ 20 hits for track,
whereas in the MVD the hits are nearer and are ~ 4-5, so although the MVD the hits are 3d and
more precise, it's easier to make mistakes (wrong matching). Moreover the parameter tuning is
different in the two cases and tracks are mainly in the transverse plane.

Concerning simulation times | get as order of magnitude :

0.1 s/event average STT simple events 4 muons @ 1 GeV/c
1 s/event complex or critical events

(using Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz) in a preliminary task deriveds
from the macros (macros take even 10 times more time)

Conclusions and remarks

My main conclusion is that this method is clearly working, but a lot of work has
still to be done in order to make it at least as good as the existing code of
pattern recognition.

In particular | see this main issues:

* How to include the information of the drift radius inside the network?
e Optimize the speed (by creating neurons in the wisest way)
« Study carefully and improve the pattern recognition reconstruction efficiency
« Background treatment (make it work also in presence of background)
 Network parameters and energy function fine tuning
* Merge this code into the main reconstruction chain and compare with the

already existing code

IMPORTANT REMARK ON THE C++ CODE

For the moment the code consists in ROOT macros, which load the
MVD or STT hits/digi/geometry root files. It does not use additional
classes, it is based in the usual ROOT containers such as TObjArray
and simple ROOT classes such as TVector3.

In the final version to be updated in the repositories, it will be more

object oriented, at least containing a suitable Neuron class. .

List of References

Articles

“Combined tracking in the ALICE detector” NIM A 534 (2004) 211-216 by A.
Badala, R. Barbera. G. Lo Re, A. Palmeri, G. S. Pappalardo, A. Pulvirenti, F. Riggi

“Pattern recognition and event reconstruction In particle physics
experiments” R. Mankel Rep. Prog. Phys. 67 (2004) 553-622

“Fast track finding with neural networks” G. Stimpfl-Abele, L. Garrido Comp.
Phys. Comm. 64 (1991) 46

“Track finding with neural networks” C. Peterson NIM A 279 (1989) 537-545

“Neural networks and cellular automata in experimental high energy physics”
B. Denby Comput. Phys. Commun. 49 (1988) 429

“Neural networks and physical systems with emergent collective
computational abilities” J. J. Hopfield Proc. Nat. Acad. of Science USA vol 79,
(1982) 2554

Books

“Neural Networks A Comprehensive Foundation” by S. Haykin (1999) Prentice
Hall

“Neural Networks Theory” A. |. Galushkin (2007) Springer-Verlag
“Neural Networks” R. Rojas (1996) Springer-Verlag 20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

