

Outline

- Introduction
 - Motivation and approach
 - Retrospect: Beam time retreat 2023
 - General UNILAC control system strategy towards 2026
- Injector Controls Upgrade
 - Secure UNILAC beam operation through 2025
 - Project planning, organization and scope
 - Intermediate UNILAC emergency control system
 - Short report from dry run
 - Move to FCC: HKR modernization sub-project
 - UNILAC production control system
 - Further project planning
- Summary and outlook

Motivation and Approach

- Hard- and Software of existing UNILAC control system from the 1990s
 - obsolete, outdated, deprecated, not maintainable anymore
 - stuck with operating system running beyond extended support contract from 2024, leading to compatibility problems and security risks
 - drain of expert knowledge due to retirement
 - GSI can not maintain two separate control systems
 - move to new FCC main control room requires upgrades of control system
- Functionally, UNILAC would be able to serve FAIR today
 - use existing legacy control system as template, no new features necessary
 - integrate UNILAC into FAIR control system
 - new developments only where necessary or high benefit can be achieved at low effort
 - exploit new capabilities later

Retrospect: Beam Time Retreat 2023

UNILAC controls transition

Effort/risk for replacing DevAcc with FESA DM4UNILAC development limited

- Main considerations
 - Support beamtimes 2024 and 2025
 - Extend operation of legacy control system ACC6 & Pulszentrale
 - Assure readiness of new control system LSA & DM for beamtimes 2025 and 2026
 - Minimize risk and effort

6th Beam Time Retreat | Ralph Bär | Accelerator Controls

FAIR GmbH | GSI GmbH

General Strategy

- Step 0: secure UNILAC beam operation through beamtime 2025
 - replace existing operating cluster with virtual machines, replace terminals in MCR
 - implement IT security measures for operation extension
- Step 1: develop emergency control system
 - first viable version of new control system with reduced and simplified feature set
 - replace existing MIL timing system by White Rabbit-based system
 - MCR modernization project: replace/upgrade hardware devices in control room
 - serves as emergency backup for beamtime 2025
- Step 2: develop production control system
 - based on emergency control system
 - replace simplifications made by fully fledged solutions, implement full feature set
 - enhance operability and efficiency
- Step 3: further development, include other linear accelerators

General Strategy

- Step 0: secure UNILAC beam operation through beamtime 2025
 - replace existing operating cluster with virtual machines, replace terminals in MCR
 - implement IT security measures for operation extension
- Step 1: develop emergency control system
 - first viable version of new control system with reduced and simplified feature set
 - replace existing MIL timing system by White Rabbit-based system
 - MCR modernization project: replace/upgrade hardware devices in control room
 - serves as emergency backup for beamtime 2025
- Step 2: develop production control system
 - based on emergency control system
 - replace simplifications made by fully fledged solutions, implement full feature set
 - enhance operability and efficiency
- Step 3: further development, include other linear accelerators

Step 0: secure UNILAC beam operation through beamtime 2025 - milestones

⇒ UNILAC runs on legacy control system up to and including beamtime 2025

- Get rid of old, outdated control system hardware
 - change from server cluster to virtual machines
 - exchange terminal consoles in MCR (and console monitors as a consequence)
- Beamtime 2024
 - operation with legacy control system on extended support
- Dry Run 2024
 - apply final updates, implement IT security measures
 - verify operational readiness
- Reverify operational readiness after application of other CS updates, (databases, services, ...) in August and December
- Beamtime 2025
 - final operation of user beam time with legacy control system beyond extended support
- Final shut down and decommissioning of legacy control system

General Strategy

- Step 0: secure UNILAC beam operation through beamtime 2025
 - replace existing operating cluster with virtual machines, replace terminals in MCR
 - implement IT security measures for operation extension
- Step 1: develop emergency control system
 - first viable version of new control system with reduced and simplified feature set
 - replace existing MIL timing system by White Rabbit-based system
 - MCR modernization project: replace/upgrade hardware devices in control room
 - serves as emergency backup for beamtime 2025
- Step 2: develop production control system
 - based on emergency control system
 - replace simplifications made by fully fledged solutions, implement full feature set
 - enhance operability and efficiency
- Step 3: further development, include other linear accelerators

Timeline for Development and Test Strategy

- Develop emergency control system as intermediate step until beamtime 2025
- Regular operation with new control system from beamtime 2026
- Interleave control system tests with already scheduled beam times and shutdowns

Project Organization

10

Project Planning 2024

Essential:

Dry run directly following the beam time

Engineering run only including UNILAC, not SIS18

Extremely dense shutdown

Integrated milestones and activities chart

- ✓ achieved
- **⇒** in progress
- **a** delayed

(tagging w/o obligation)

Control System Architecture Overview

Step 1: develop emergency control system - milestones

- Dry Run 2023
 - first test of new control system components at UNILAC (settings generation and data supply)
 - testing assisted by legacy control system
- Implementation of new basic functionality
 - Patterns/Chains at UNILAC, based on existing concept
 - New timing generation and scheduling concept
 - Non-Multiplexed contexts for DC devices
- Dry Run 2024
 - verify main capabilities of emergency control system
 - core functionality complete, standalone testing possible
- Engineering Run 2024
 - test complete emergency control system with beam without SIS
 - feature complete emergency control system
 - Data Master: White Rabbit-based timing with some restrictions, interim pattern concept
 - complete, simplified settings generation and data supply
 - basic operating tools and applications, incl. most of MCR modernization
 - overall reduced operating features and efficiency
- Beamtime 2025
 - only if necessary: operation with emergency control system

Dry Run 2024-2: Emergency App & First Data Master Generated UNILAC Timing

taken 05.07.2024

Dry Run 2024-2: First Measurements with original DM WR-to-MIL Timing at UNILAC

taken 05.07.2024

MCR Modernization Overview and Status

Work package	Dept.	Description	Status
MAPS	BEA	Beam current measurement and display	Commissioning
UNIMON	BEA	RF cavity display	
PHAS	BEA	Phase probe control, bunch shape and energy measurement	In progress
Cupid	BEA	Integrated video monitoring system	
UNIPOS	BEA	Beam position measurement and display	In progress
BIF	BEA	Beam Induced Fluorescence monitor	
Chopper display	ACO	Status display for beam chopper requests	In progress
PG/EMI protection	ACO	Control and status display for SEM grid protection	In progress
Cup control	ACO	Control and status display for faraday cups	In progress
Interlock/beamloss display	ACO	Interlock and beamloss status display	In progress
Experiment signal display	ACO	Display any detector feedback from beam users	Postponed
WR-Snoop@UNILAC	ACO	WR timing diagnostic tool	
BTM	ACO	Beam Transmission Monitoring	Pending
Experiment timing	ACO	Trigger, sync and gate signals for beam users	Pending
Gas stripper	PSU	Pulsed hydrogen gas stripper	In progress
Potiboard	ACO/OPE	Realtime accelerator (magnet) adjust	In progress
Oscilloscopes	ACO/IQU	Signal display for ion sources	Installation

General Strategy

- Step 0: secure UNILAC beam operation through beamtime 2025
 - replace existing operating cluster with virtual machines, replace terminals in MCR
 - implement IT security measures for operation extension
- Step 1: develop emergency control system
 - first viable version of new control system with reduced and simplified feature set
 - replace existing MIL timing system by White Rabbit-based system
 - MCR modernization project: replace/upgrade hardware devices in control room
 - serves as emergency backup for beamtime 2025
- Step 2: develop production control system
 - based on emergency control system
 - replace simplifications made by fully fledged solutions, implement full feature set
 - enhance operability and efficiency
- Step 3: further development, include other linear accelerators

Step 2: develop production control system - milestones

- Complete and finalize implementation of initial production control system
 - starting point: emergency system
 - fully fledged White Rabbit-based timing system, new FAIR pattern scheduling concept
 - enhanced settings generation and data supply
 - full set of operating tools and applications
 - bugfixes, essential tuning and necessary enhancements
- Engineering Run 2025
 - test initial production control system with beam
 - first test of beam injection into SIS18 solely with new control system
- Dry Run / Engineering Run 2025/26
 - in between testing of further developments before first beamtime operation
- Beamtime 2026
 - initial production control system
 - first regular operation with new control system
- Beamtime 2027
 - improved production control system
 - first regular operation of user beam time with new control system

Timeline for Development and Test Strategy

Project Planning 2025/26

Essential:

Engineering run 2025 directly following the beam time and including UNILAC and SIS18 already communicated and fixed

General Strategy

- Step 0: secure UNILAC beam operation through beamtime 2025
 - replace existing operating cluster with virtual machines, replace terminals in MCR
 - implement IT security measures for operation extension
- Step 1: develop emergency control system
 - first viable version of new control system with reduced and simplified feature set
 - replace existing MIL timing system by White Rabbit-based system
 - MCR modernization project: replace/upgrade hardware devices in control room
 - serves as emergency backup for beamtime 2025
- Step 2: develop production control system
 - based on emergency control system
 - replace simplifications made by fully fledged solutions, implement full feature set
 - enhance operability and efficiency
- Step 3: further development, include other linear accelerators

Timeline for Development and Test Strategy

- Step 2 (develop production control system) covers 2026 and 2027
- Step 3 (further development, include other linear accelerators) starts 2028
 - transition to normal development and maintenance
 - bugfixes, tuning and further enhancements ⇒ exploit new capabilities
 - use CS basis created for UNILAC on other machines.

Summary and Outlook

- Injector controls upgrade mission since 2020
 - provide new, LSA based/FAIR standard control system for GSI linacs
 - focus on FAIR injector UNILAC, use functionality as reference
 - enable move to new FCC MCR
 - secure operation of UNILAC through all planned and upcoming beamtimes

Project

- Planning, schedule and organization set up achieved
- First major milestones reached, project well on track
- Challenges and tight schedule ahead

Summary and Outlook

- Legacy System 2024/25
 - Beamtime 2024 served well
 - Last actions executed, testing successfully completed
 - Prepared for beamtime 2025
- Emergency System 2025
 - Dry Run 2023 successful, Dry Run 2024 promising, but still ongoing
 - Introduction of new fundamental concepts (Non-mux context)
 - Development largely on schedule
 - Capabilities far better than anticipated
 - Temporary solutions, drawbacks and limitations have to be accepted
 - Intermediate use of existing pattern/chain-concept, will be exchanged by new FAIR concept (standalone-chains)
 - Poor-man's coupling of SIS18 to UNILAC
 - Limited length of master schedule (super cycle) and number of chains (beams)
 - simplified settings generation
 - Complete replacement of UNILAC Pulszentrale remains as major challenge

Summary and Outlook

- Move to FCC:
 - Modernization project on track
 - Most parts will be ready for emergency control system
 - Development of initial production control system on time needed
 - Emergency control system serves as backup

Thank you for your attention!

Timing system test on 28.06.24:

²³⁸U beam accelerated to SIS18 by use of WR-to-MIL Gateways

Topographic Control System View on UNILAC

UNILAC LSA beam energy model

