

New Ions Ralph Hollinger Beam Time Retreat 2024

Status of operation in 2024

lon species	Duty cycle	Intensity (RFQ, emA)	lon source	Duration (days)	
Physics run (February – June, 2024)					
¹² CH ₃ ⁺	2 Hz / 0.45 ms	2.1	MUCIS-1990	22	
³⁶ O ₂ +	1 Hz / 0.5 ms	4.4	VARIS	6	
³⁶ Ar ⁸⁺	CW	0.1	ECRIS	17	
⁴⁰ Ar ⁸⁺	CW	0.1	ECRIS	39	
⁴⁰ Ar ⁺	2 Hz / 0.7 ms	9	CHORDIS	8	
⁵⁰ Ti ²⁺	10 Hz / 1 ms 50 Hz / 5 ms	0.04	PIG	5 21	
⁵² Cr ²⁺	50 Hz / 5 ms	0.14	PIG	14	
⁵⁶ Fe ²⁺	5 Hz / 1 ms	0.12	PIG	9	
⁵⁸ Ni ²⁺	1 Hz / 0.45 ms	3.3	VARIS	6	
¹⁰⁰ Mo ³⁺	2 Hz / 0.4 ms	0.5	VARIS	8	
¹⁷⁰ Er ³⁺	1 Hz / 0.45 ms	1.2	VARIS	11	
¹⁹⁷ Au ⁸⁺	25 Hz / 3 ms	0.04	PIG	26	
¹⁹⁷ Au ⁴⁺	1 Hz / 0.4 ms	3.8	VARIS	26	
²³⁸ U ⁴⁺	1 Hz / 0.45 ms	14	VARIS	38	

GSI Helmholtzzentrum für Schwerionenforschung GmbH

High Current Ion Sources

Establishing of ¹⁷⁰Er³⁺ beam from VARIS

- 11 days of operation
 1 Hz / 0.45 ms, request mode
- Operation with natural material:
 14.9% of Er-170 in nat. composition
- Clear separation of ¹⁷⁰Er³⁺ in the LEBT
- Beam intensity:
 1.2 mA of ¹⁷⁰Er³⁺ (UH1DT1) => 2.5·10¹¹ in 100 μs
 0.3 mA of ¹⁷⁰Er⁵⁷⁺ (TK7DT3) => 3.3·10⁹ in 100 μs
- Lifetime of a single cathode: > 10 hours

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Aleksey Adonín

Establishing of ¹⁰⁰Mo³⁺ beam from VARIS

- 8 days of operation with a single source 2 Hz / 0.4 ms, request mode
- **Operation with natural material:** 9.7% of Mo-100 in nat. composition
- Clear separation of ¹⁰⁰Mo³⁺ in the LEBT
- **Beam intensity: 0.5 mA** of ¹⁰⁰Mo³⁺ (UH1DT1) => **1.10¹¹** in 100 μs 65 μA of ¹⁰⁰Mo³⁸⁺ (TK7DT3) => **1.1·10⁹** in 100 μs
- Lifetime of a single cathode: > 24 hours

Mo⁺

Tria'd?

UL5DT8

UH1DT1

UL4DT4

Development of new ion species for operation from VARIS: ¹⁹⁸Pt⁴⁺ and ¹⁸⁶W³⁺

- ¹⁹⁸Pt⁴⁺ (7.4% in nat.) beam from natural Pt ¹⁸⁶W³⁺ (28.4% in nat.) beam from nat. W-Cu(15%) alloyment
- Operation mode: 1 Hz / 0.35 0.55 ms
- Clear separation of both isotopes in the LEBT
- **Beam intensity:**

0.7 mA of ¹⁹⁸Pt⁴⁺ (UH1DT1) => **1·10¹¹** in 100 μs **1 mA** of ¹⁸⁶W³⁺ (UH1DT1) => **2·10¹¹** in 100 μs

Operation stability of Pt⁴⁺ **over 10 min**

FAIR E = i

Mass spectra

Penning Ion Sources

⁵²Cr²⁺ performance with PIG-source

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Operation stability over 2 hours Analyzed beam current (GUR5DT8) 160.00000 µA 140.00000 µA 120.00000 uA 100.00000 µA 80.00000 uA 60.00000 µA 40.00000 µA 20.00000 µA 0.00000 A 11:40 11:50 12:00 12:10 12:20 12:30 12:40 12:50 13:00 13:10 13:20 GUR5DT8 CURRINFO.mean

Service PIG sources

Rustam Berezov

⁵⁵Mn³⁺ and enriched ⁵⁴Cr²⁺ ongoing development

$\frac{54 \text{ Cr}^{2+} \text{ (NiCr 30\%)}}{10000 \mu \text{ A}} \text{ A/z=27 (50 \text{ Hz / 5 ms})}$

Only 170 mg available on the market (price: up to 800 €/mg)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

ECR Ion Source

Establishment of ⁵⁵Mn and ⁵⁴Cr beams form the ECRIS FAR FAR

lon species	Intensity (avg, eµA)	Consumption (mg/h)	
⁵⁵ Mn ⁹⁺	80	8.1	
⁵⁴ Cr ¹⁰⁺	50	8	

⁵⁴Cr¹⁰⁺ ion beam establishment test

⁵⁴Cr Test @ Engineering Run Experimental Results

Ion beam stability over time (up) and drain curent of the extraction power supply (down)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Fabio Maimone

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Fabio Maimone

Dual Beam (C-He) from ECR

Dual isotope beams: carbon radiotherapy and helium online monitoring

courtesy of C. Graeff / L. Volz

- C. Graeff et al (2018), https://doi.org/10.1016/j.ejmp.2018.06.099
- L. Volz et al (2020), Phys. Med. Biol. 65 055002
- D. Mazzucconi et.al (2018), https://doi.org/10.1002/mp.13219
- Ch. Graeff, L. Volz, M. Durante, Prog. Part. Nucl. Phys., vol. 131, p. 104046, Jul. 2023
- Jennifer J Hardt et al., 2024 Phys. Med. Biol. in press.

- Particle therapy: Bragg peak based
- Highly localised dose distribution / highly conformal
- But: steep dose gradient → sensitivity to range uncertainties
 - inter-/intra-fractional anatomic changes
 - Uncertainties in planning
 - Patient set-up
 - Motion induced range variation
- One solution: mixed carbon-helium ion beams (90 % C, 10 % He*)
 - Similar mass-to-charge-ratio
 - Range of He ~3 times larger than C at same energy/nucleon
 - Carbon for irradiation
 - · Helium passes patient for online monitoring
- Online range verification: extraordinary increase in precision of conformal dose

*extra dose < 1 %

Míchael Galonska

Dual Beam (C, He) from ECR

EXPERIMENTAL SET-UP

14.5 GHz CAPRICE ECRIS

- Used for therapy at GSI
- Medical centres use ECR ion sources

Measurement of

- Mass spectra (no distinction between $C^{3+/4}He^+$) ٠
- Beam current (no distinction between $C^{3+/4}He^+$) ٠
- **Optical emsission lines (approximate C-to-He ratio)**

ECR lon source

GSI Helmholtzzentrum für Schwerionenforschung GmbH

LEBT **Optical spectrometer** ECRIS: CAPRICE ECR Ion Source DC3 O_{Dtica}, Telephoto lens Quadrupole Singlet b_{eam} Magnet Spectrometer Splitte MS DC1-3: Diagnostic Chamber to the CCD Camera

© www.oceanoptics.com

Míchael Galonska

ECRIS DC1 SO

DC2 QS

SO:

QS:

MS:

Solenoid

1 m

ELEMENTS COMBINATIONS

- CH₄ und ³He: C⁴⁺, ³He⁺ M/Q=3 \times
- CH₄ und ⁴He: C³⁺, ⁴He⁺ M/Q=4 ✓
 - \leq 150 µA ¹²C³⁺ upstream UNILAC
 - ≈ 4 to 5 μ A He⁺
 - Minimum oxygen contamination (¹⁶O⁴⁺)

Dual Beam (C, He) from ECR

EXPERIMENTAL SET-UP

14.5 GHz CAPRICE ECRIS

- Used for therapy at GSI
- Medical centres use ECR ion sources

Measurement of

- Mass spectra (no distinction between C^{3+/4}He⁺)
- Beam current (no distinction between C^{3+/4}He⁺)
- Optical emsission lines (approximate C-to-He ratio)

ESTABLISHMENT OF C-He DUAL BEAM

- Mixed beam: CH₄ as main gas and ⁴He auxiliary gas.
- Tested a steady ¹²C³⁺ carbon ion beam of approximately 150 eµA containing a helium particle fraction of about 10 %, i.e. approx. 15 eµA (⁴He⁺).
- Set the C³⁺ ion beam and followed by stepwise adding Helium while recording the OES lines of carbon (wavelength 465 nm) and helium (728 nm) and the corresponding CSD to estimate the C-to-He ratio.

ELEMENTS COMBINATIONS

- CH₄ und ³He: C⁴⁺, ³He⁺ M/Q=3 X
- CH₄ und ⁴He: C³⁺, ⁴He⁺ M/Q=4 ✔
 - \leq 150 µA ¹²C³⁺ upstream UNILAC
 - ≈ 4 to 5 µA He⁺
 - Minimum oxygen contamination (¹⁶O⁴⁺)

Míchael Galonska

Thank you for your attention

