

Spill Optimization System (SOS)

SOS

7th Beam Time Retreat, Kranichstein, 11.7.2024 Philipp Niedermayer and Rahul Singh

Bild: D. Fehrenz, GSI/FAIR, April 2024

Contents

- Slow Extraction from Synchrotrons
- Spill Improvement with Tailored Excitation Signals
- Spill Optimization System (SOS)
- Discussion

GSI Accelerators

- Slow extraction from SIS18 and later SIS100
- Beam to many experiments
 - Various lons & Energies
 - Is to 20s spill length

	Top Energy		Intensity	
	SIS18	SIS100	SIS18	SIS100
Protons	4.7 GeV	28.8 GeV	10 ¹¹	10 ¹³
Uranium	1.0 GeV/u (U ⁷³⁺)	2.7 GeV/u (U ²⁸⁺)	4·10 ⁹	3·10 ¹¹

Source: https://indico.gsi.de/event/18184/contributions/76293

GSI Helmholtzzentrum für Schwerionenforschung

Slow Extraction from Synchrotrons

- Working point near sextupole driven 1/3 resonance
- Separatrix beyond which particles are unbound & extracted
- Methods to extract spill
 - Quadrupole-driven → Shrink separatix with tune change
 - Spill quality dominated by power supply ripples

Slow Extraction from Synchrotrons

- Working point near sextupole driven 1/3 resonance
- Separatrix beyond which particles are unbound & extracted
- Methods to extract spill
 - **Quadrupole-driven** \rightarrow Shrink separatix with tune change
 - Spill quality dominated by power supply ripples
 - **RF Knock Out** \rightarrow Control particles with excitation
 - Spill quality dominated by RF signals

5

Beam

Stripline Exciter

Slow Extraction from Synchrotrons

- Challenge: Steady particle flux on all timescales

Microscopic (µs to ms)

For efficient detector usage (minimize pileup and prevent interlocks)

Micro-Spill Methods

<u>Macroscopic (ms to s)</u> For efficient beam usage

(maximize duty cycle, precise dose delivery)

Feedback System

 $\Delta t_{\rm count} = 1 \,\,{\rm ms}$

Septun

Tailored excitation signals

- Excitation signal controls RF-KO extraction process
 - Many different empirical signals are used
 - Recent progress with multi-narrowband signals at HIT (C. Cortés et. al.)
 - → Huge potential for spill quality improvement

0.3

Normalized horizontal phase space

Tailored excitation signals

- Particle dynamics for RF-KO excitation
 - Simulations with Xsuite particle tracking
 - Sinusoidal excitation causes spiralling motion
 - → Faster separatrix crossing
 - → Supresses fluctuations introduced by magnet ripples and excitation band
- Proposed Noise++ signal
 - Trade-off between 2 sines and noise (for efficiency)
 - Improvement confirmed in experiments at COSY Jülich

- Recent advances with Spill Optimization System
 - Feedback controller for macro-spill shape (ms to s)
 - Signal optimization for micro-spill quality (µs to ms)

- Implemented with Software-Defined Radio (GNU Radio & RFNoC)
 - Digital signal processing on CPU & FPGA
 - Flexible, maintainable, open source, commercial hardware
 - Standalone all-in-one system

- Commissioned at COSY Jülich
- Now used for GSI experiments
- Full control system integration and operator training planned

Published under GPLv3 at git.gsi.de/p.niedermayer/exciter

Different detector systems tested

- Experiment detectors: LGAD, diamond, …
- Non-destructive: BLM, DCCT, CCC
- Destructive: IC, SEM, Scintillator
 - ightarrow to optimize & playback recorded signal

GSI Helmholtzzentrum für Schwerionenforschung

Improvements – Report from User

- HADES experiment reported
 - → Immediately 40% more statistics due to "DC" beam (geometric factor)
 - → At least factor 2 more statistics due to absence of cycle-to-cycle fluctuations

Particle Number in SIS18

Data rate HADES detector

GSI Helmholtzzentrum für Schwerionenforschung

Philipp Niedermayer, Rahul Singh

Improvements – How does it help?

- Initial situation
 - Particle number from injector fluctuates
 - Maximum intensity limited by detectors / dose delivery
 - Safety factors reduce average rate

Macro-spill feedback

- Delivers a stable "DC" beam
- → Statistics outcome is maximized
- Machine protection (at high intensities)
 - Ring must be fully emptied
 - ightarrow Use dynamic extraction time or combination with quad-driven / fast extraction

For fixed extraction time (accounting for peak intensity): gain in statistics "only" by geometric factor

Improvements – How does it help?

- Initial situation
 - Intensity spikes lead to pile-up; gaps lead to idle times
 - Beam usage is inefficient
 - Precise dose delivery is difficult

Micro-spill optimization

- Delivers a spill with less spikes (better spill quality)
- → Gain in statistics & predictable irradiation
- Trade-off (at high energies)
 - Improvement at cost of higher excitation power or lower efficiency
 - → Poisson-limited spill quality possible for low energy, low intensity beams

For high energy, high intensity beams: gain in spill quality will be less (but still significant)

Philipp Niedermayer, Rahul Singh

Regular spill

Improvements – Towards Poisson Limited Spills

Experiment at SIS18 with ¹⁹⁷Au⁶⁵⁺ at 200 MeV/u

- 400 W amplifier extracts 1.6% of particles
- Excitation signal: 3 sines with optimized frequencies

Summary

- Challenge of slow extraction
 - Steady particle flux
 - RF-KO excitation offers to improve the beam quality
- Spill Optimization System
 - Feedback controller for macro-spill shape
 - Signal optimization for micro-spill quality
 - Implemented with Software-Defined Radio
- Improvements
 - Gain in statistics
 - Precise dose delivery
 - Efficient beam usage

2.3000 2.3025 2.3050 2.3075 2.3100 2.3125 2.3150 2.3175 Extraction time / s

Spill rate

Signal synthesis

FAIR E = i

Extracted Particle Spill

Extraction time /

Optimizer

E-Septum

11 July 2024

Data rate HADES detector

 $\Delta t_{count} = 1 \text{ ms}$

Rate

Acquisition

and analysis

Pulses

M-Septum

Detector

GSI Helmholtzzentrum für Schwerionenforschung

Outlook

- To maximize benefits while ensuring machine safety
 - \rightarrow Use dynamic extraction time
 - \rightarrow Combine with guad-driven or fast extraction
- Feedback for quad-driven slow extraction
 - System adopted and tune wobbling integrated
 - Proof of principle successful
- Integration into operating
 - Project plan written

Thanks to all supporting this work!

COSY Team; GSI Accelerator Physics, Accelerator Operations, Eike Feldmeier, Giuliano Franchetti, Ralf Gebel, René Geißler

11 July 2024

cale: 5.00E7

Stored

intensitv in SIS18

Extracted

intensity on target

Thank you!

Backup Slides

Project Plan: Spill Optimization System (SOS)

Key milestones

- Multiplexed operation (with multiple SDRs)
- Dynamic intensity control (includes spill pause and abort)
- Control system integration with FESA & LSA
- Detector integration (Lassie) and failure checks
- Commissioning with beam
- Operator trainings & manuals

2024

202

202

11 July 2024

- Documentation at <u>git.gsi.de/p.niedermayer/exciter/-/wikis</u>
- System available for operational use

Excitation for RF KO extraction with feedback & optimizer (sddsc175)				
Detector Signal				
Threshold low: -0.5 V Threshold high: -0.3 V Calibrate Offset				
Value: 2.370e+03 particles/s Detector: Spill [particles/s per Hz] × Calibration: 79				
Data saving Filename: data/%y%m%d/%H%M%S_ko_tmp.200kSps.complex64				
Excitation Signal Level Control Automatic Optimizer Expert				
Particles stored: 7e+07 Target rate: 3e+07 particles/s Expected spill duration: 2.333 s				
Feedforward: Off				
Feedback control: On Kp: 0.14 Ki: 70 /s Kd: 0 s Ta: 0.1 ms				
Controller value: 0.000000 Limit: 1.5				
Global level normalisation: 3				
Output				
Enable external trigger Trigger count: 224 Manual trigger				
Spill duration: 5 s 🗹 Auto duration (trigger gate)				
Output active Output RMS: 0.000000 V Overload: 0.000000 %				
Configuration: 1 * Info: U73+ S00MeV/u Save config Restore config				

GSI Helmholtzzentrum für Schwerionenforschung

Philipp Niedermayer, Rahul Singh

Spill duty factor

$$F = \frac{\langle N \rangle^2}{\langle N^2 \rangle} = \frac{\mu_N^2}{\mu_N^2 + \sigma_N^2} = \frac{1}{1 + c_v^2} \to \frac{\langle N \rangle}{\langle N \rangle + 1}$$

Define time bins Δt_{count} to count particles

- Number of particles N per bin
- Coefficient of variation

Spill Quality

Spill fluctuations

$$c_{v} = \frac{\sigma_{N}}{\mu_{N}} = \frac{\sqrt{\operatorname{Var} N}}{\langle N \rangle} \to \frac{1}{\sqrt{N}}$$

Poisson statistics: $\sigma_N = \sqrt{\langle N \rangle}$

Noise ++ excitation method

- Noise ++
 - Broadband noise signal
 - ightarrow Incoherent excitation & random walk
 - ightarrow Efficient power transfer to beam
 - \rightarrow No artificial ripples induced
 - Mono-frequent sinusoidal
 - \rightarrow Strong coherent excitation
 - → Fast separatrix crossing
 - \rightarrow Reduce ripples & noise floor

Experiment: Comparison

- Excitation signals
 - Components distributed across sidebands
 - → Mitigates beating
 - Parameters optimized at $\Delta t_{count} = 500 \ \mu s$
 - \rightarrow Comparing best cases each

24

