

FAIR Booster Mode

D. Ondreka, SYS 7th Beam Time Retreat, 11 July 2024

Contents

- Booster mode
 - Definition
 - Topics
- Super-cycle development
- Hysteresis effects
- BD applications and booster mode
- Status
- Summary and outlook

Booster Mode

- Goal: reach maximum intensity in SIS100
 - Longitudinal filling by stacking four SIS18 cycles
 - Two empty buckets as beam abort gap
 - Used with any ion species
- Fundamental requirements
 - Fastest possible repetition rate
 - Direct ramp-down to injection level
 - Fast extraction only
- Repetition rate
 - Original value: 2.7 Hz for U²⁸⁺ (reference)
 - Cycle length 370 ms incompatible with 50 Hz
 - Presently aiming for cycle length 380 ms (2.6 Hz)
 - Cycle time longer for lighter ions to 18 Tm!
- Common misconceptions:

 - fastest ramp rate (19 kA/s) ⇒ booster mode

Stacking scheme for RIB production

SIS18 and SIS100 cycles for RIB production

FAIR Booster Mode

Booster Mode: Topics

- Beam physics
 - Acceleration at max. possible ramp rate (19 kA/s)
 - Strong eddy current effects
 - Hysteresis effects due to special magnetic cycle
- Hardware
 - AEG power converters
 - Reaching 19 kA/s on down ramp
 - Decrease of rounding time: 32 ms → 24 ms ?
 - MA cavities for H=2
 - Max. voltage, especially for lighter ions
- Machine model
 - Generation of booster mode cycles
 - Smallest number of BPs: bunching in INJECTION
- Control system
 - BD applications handling booster mode properly
 - Ramped front-ends: smaller min. BP length
 - Coupling with new UNILAC timing system
 - FAIR patterns: repetition of single booster cycle

Super-Cycle Development

- Preferred operation: n-fold repetition of same cycle
 - May or may not be feasible
- Version 1

Version 2

First successful test with beam (U²⁸⁺, 2022)

Advantage: same hysteresis for every cycle

Successfully used (U²⁸⁺, 2023; U⁷³⁺, 2024)

 Drawback: completely different magnetic hysteresis for first cycle

Drawback: eddy currents different in first cycle due

Version 2 (2023)

Version 3

- Advantage: same hysteresis and eddy currents in every cycle
- 2 failed test in 2024 (wrong timing graph?)
 - Error analysis ongoing

to UNILAC synchronization

May wait for new UNILAC timing system

FAIR Booster Mode

Hysteresis Effects: General

Magnetic field in standard cycle

Magnetic field in booster cycle (first injection omitted)

ection

1.566

- Different magnetic cycle for booster
 - Direct ramp-down to injection level to save time
 - Hysteresis loop significantly smaller
- Expected general effects
 - Larger remnant field at injection
 - Different shape of excitation curve
- Impact on performance
 - Degradation of injection performance
 - Increased beam loss at start of ramp
 - Measured with special U73+ booster cycle U73+
 - Injection into 4/5 repetitions for same eddy currents

Injection

UNI sy n

555 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

High losses at start of ramp in booster cycles

ection

GSI Helmholtzzentrum für Schwerionenforschung GmbH

FAIR Booster Mode

njection

Hysteresis Effects: Dipoles

Larger remnant field at injection

- Shift of horizontal orbit towards center
- Compensation by adjusting B field at injection

Radial position for same orbit at injection

Cycle	∆R set value
Booster	8 mm
Standard	-2 mm
Difference	10 mm

Horizontal orbit evolution in standard cycle

Horizontal orbit evolution in booster cycles

- Strong orbit motion at start of ramp
 - Caused by different shape of B(I) curve
 - Good news: cycles appear to behave identical!
- Observation by monitoring orbit
 - Orbit application can display all cycles
 - Data can be exported in binary format
 - Limitations of present software
 - No comparison of different cycles

Hysteresis Effects: Quadrupoles

- Larger remnant field at injection
 - Tune shift, esp. large in vertical plane
 - Compensation by adjusting set tunes
- Strong tune motion at start of ramp
 - Caused by different shape of B'(I) curve
 - Good news: cycles appear to behave identical!
- Observation difficult
 - Displayed data: snapshots from video recorded on smart phone
 - Limitations of present software
 - No comparison of different cycles
 - No saving data for different cycles

Injection tune set values for U⁷³⁺ for same real tunes

Cycle	Q _h set value	Q_v set value
Booster	4.275	3.21
Standard	4.305	3.315
Difference	-0.03	-0.105

Horizontal tune in booster mode with U^{73+} for four successive cycles

Vertical tune in booster mode with U73+ for four successive cycles

Hysteresis Compensation (I)

- Short test during last week of beam time
 - Made possible due to septum cable failure
 - U⁷³⁺ booster cycle with single injection used
 - Goals: measure and demonstrate compensation
- Measurement of hysteresis
 - 'Chimney' used to change hysteresis loop
 - Injection offsets compensated by set values
 - Separately for dipoles and quadrupoles
 - Data acquired, analysis ongoing

Booster cycle with 'chimney' used for hysteresis measurements

Effect of changing hysteresis loop for D-quadrupoles on vertical tune

GSI Helmholtzzentrum für Schwerionenforschung GmbH

FAIR Booster Mode

Hysteresis Compensation (II)

Measured horizontal orbit

- Demonstration of dynamic compensation
 - Manual trims during ramp
 - Dipole hysteresis → integral field B0L
 - Quad hysteresis \rightarrow vertical tune Q_v

Manual correction trim to vertical tune

Measured vertical tune

- Software tools required for routine operation
 - Orbit correction on ramp
 - Tune correction on ramp

BD applications for booster mode

- Non-uniform behavior of existing applications for displaying beam signals
 - DCT and orbit application
 - All cycles displayed on single time axis at end of super-cycle
 - ACT and tune application
 - Every cycle is displayed when it finishes, erasing the previous one
 - Saving data of individual cycles may or may not be possible
- Goals
 - Allow operators to focus on and diagnose individual cycles
 - Allow operators to compare individual cycles
 - Allow machine physicists to save data of individual cycles
- Considerations for implementation
 - Requirements need to be clarified
 - Present 'booster mode light' may not be identical to final solution
 - Final booster mode structure will be part of FAIR pattern concept

Status of Topics

Category	Торіс	Demonstration	When	Status
Physics	Ramp rate 19 kA/s with U ²⁸⁺	Reached 18.9 kA/s up, 17.6 kA/s down	12/2023	up: ok down: p.f.i.
Physics	Investigation of eddy current effects			open
Physics	Compensation of hysteresis effects	Manual compensation	06/2024	demo: ok tools: open
HW	Smaller rounding times for AEG			open
HW	Max. voltage for MA cavities to 42 kV			open
Model	Super-cycles with optimal hysteresis	Version 2 successful, version 3 failed	2022+23	p.f.i.
Model	Bunching in injection			open
CS	Adapt BI applications to booster			open
CS	Smaller min. BP length in FG			open
CS	Coupling with new UNILAC timing			open
CS	FAIR patterns: rep. of single cycle			open

p.f.i. = potential for improvement

Comparison to FAIR Requirements

Booster for U ²⁸⁺	FAIR (50 Hz)	Present status
Ramp rate	19 kA/s	18.9 kA/s up, 17.6 kA/s down
Available MA voltage	42 kV	39 kV
Cycle time	380 ms	400 ms
Repetition rate	2.63 Hz	2.50 Hz
Stacking time	1.14 s	1.2 s

- Present MA cavity voltage appears sufficient up to $\sim 5.10^{10}$ particles
- Potential for reducing cycle time to 380 ms

•	Increasing ramp down rate:	10 ms
•	Reducing min. BP length from 16 ms to 12 ms:	4 ms
•	Reducing rounding time from 32 ms to 24 ms:	16 ms
•	Bunching in injection BP:	16 ms

\rightarrow FAIR design parameters for booster with U²⁸⁺ well in reach

Summary and Outlook

- Booster mode machine development well advanced
 - Demonstrated 2.5 Hz operation with U²⁸⁺ (already in 2023)
 - Hysteresis effects understood and manual compensation demonstrated
 - Apparently four identical cycles possible with suitable super-cycle

- Recommended next steps
 - Activities in SYS
 - Booster mode test with a lighter ion, e.g. Ar¹⁰⁺
 - Investigation of eddy current effects
 - Merging injection and bunching beam process to save time
 - Development of hysteresis compensation tool
 - Light-weight adaptation of BI applications to handle booster mode better