Electroweak Physics

Lars Schmitt, FAIR/GSI PANDA CM LXIV, Goa, India, March 13 2013

Introduction to the Physics

Status of CPV in Charm

Rates and Prospects

Conclusions

Symmetries: C, P and T

Fundamental Symmetries

- P : Parity, mirror
- C : Charge conjugation
- T : Time reversal
- CPT conserved in all QFTs

What is CP Violation?

- Particle physics and cosmology: difference matter / anti-matter
- Weak interaction: Parity violation
- CP symmetry should be conserved

Phase in CKM matrix causes CPV

Brief History of CP Violation

- 1964: CPV in $K \leftrightarrow \overline{K}$ mixing (small effect: $\varepsilon \approx 1.6 \times 10^{-3}$)
- 1973: Kobayashi & Maskawa: 3 families
- 1999: Direct CPV in K→ππ decay (small effect: ε'/ε ≈ 1.7x 10⁻³)
- 2001: CPV in $B,\overline{B} \rightarrow J/\psi K_s$ decay

(large effect: $sin2\beta = 0.74\pm0.07$)

SM explains CPV pattern in mixing & decay

Physics Introduction

L. Schmitt, GSI

Flavour Mixing and CP Violation

CP Violation in Standard Model:

- Interference of 2 amplitudes
- CKM elements with phase difference
- CP asymmetry: $\alpha_{CP} = \frac{|A|^2 |\bar{A}|^2}{|A|^2 + |\bar{A}|^2}$

Indirect CP Violation: △F=2

- Mixing induced:
 D⁰ oscillates to D⁰
- Mass difference, lifetime difference
- 2 States: $|D_{H/L}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$

Direct CP Violation: △F=1

• CP violating phases in decay

 $A(D \rightarrow f) \neq A(\overline{D} \rightarrow \overline{f})$

CKM elements

Physics Introduction

n a n d a

Direct CP Violation

Direct CP Violation in SM:

- Two interfering amplitudes needed
- Singly Cabibbo suppressed (SCS):

Channel	BR $(\%)$	$\alpha_{CP}(10^{-3})$	
$D^+ o \pi^+ \eta'$	0.75	0.77	
$D^+ o K^+ ar K^0$	0.72	0.52	
$D^{ op} ightarrow ho^{ op} \pi^{ op}$	0.45 (th)	0.89	
$D_s^+ o K^+ \pi^0$	0.15 (th)	1.1	
$D_s^+ o K^+ \eta'$	0.5 (th)	0.64	
$D^{0} o \pi^{\pm} ho^{\mp}$	0.5 - 0.7 (th)	0.4	

- Typical BR ~ 0.2-1% need 10⁸ rec. charm for $\alpha_{CP} \approx 10^{-3}$
- Large α_{CP} could be due to new physics
 (NP) or strong phase
- CF or DCS : $\alpha_{CP} = 0 \rightarrow \text{search NP}$

Comparison of B and D

Decay amplitudes:

and and an and a state of the s	tree	penguin	
B-mesons	small CKM	large CKM	
D-mesons	large CKM	small CKM	

- $\alpha_{_{CP}} \sim 10^{-3}$ for D-mesons
- $\alpha_{_{CP}} \sim \text{several } \%$ for B-mesons
- → Search for NP in D decays

panda

Physics Introduction

Physics Introduction

New Methods for CP Violation Searchesoda

Phase space analysis:

Measure phase differences

- Dalitz plot analysis
- ➤ Multiple channels
- → Get strong phase & amplitude, mixing and CPV parameters
- Partial Wave Analysis
- → Get CP-odd and CP-even states, DCS modes
- Depends on decay model

Polarisation

- Hyperon decays
- η-decays

L. Schmitt, GSI

Other Electroweak Topics

FCNC decays:

- In SM: BR ~ 10⁻⁸
- Beware of resonances in D \rightarrow XI⁺I⁻: e.g. D⁺ $\rightarrow \pi^+ \phi \rightarrow \pi^+ \mu^+ \mu^-$
- SUSY channels often bigger than SM

Dilepton decays:

- E.g. $D^0 \rightarrow \mu^+ \mu^-, BR \sim 10^{-9} 10^{-12}$
- $D^0 \rightarrow \mu e$ in SM = 0
- ➔ BG-free tests for new physics

Charm vs. Beauty:

- Intermediate d-type quarks
- SM contribution small due to V_{ub}
- rate ~ f (m_s)- f (m_d) (=0 in SU(3) limit)
- Sensitive to new physics

Physics Introduction

MSSM radiative decay

pand

Probing the Standard Model

0.7 Δm, Δm, & Δm, 0.6 0.5 sin 26 0.4 0.3 0.2 Vub 0.1 0.0 -0.2 -0.4 0.0 0.2 0.4 0.6 0.8 ρ

- CP violation in B decays well measured
- K system as well
- Further channels and constraints all fit the SM
- Impressive agreement with SM
- No hints for NP

Status of Unitarity Triangle

Alternative channels for NP D-mesons

- → Same methods as for B
- → SM CPV small
- ➤ Small deviations can hint for NP
- Hyperons
- → CPV in decay polarisation
- η-mesons
 - $\eta \to \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$
- ➤ CP violating Bremsstrahlung

panda

Status of CPV

Status of Charm Mixing

$$x = \frac{\Delta m}{\Gamma} = (0.81 \pm 0.30^{+0.13}_{-0.17}) \quad y = \frac{\Delta \Gamma}{2\Gamma} = (0.37 \pm 0.25^{+0.10}_{-0.15})$$

Theoretical estimates:

- x,y ~ 10⁻³
- SU(3) breaking (phase space, decay constants, FSI): O(1%) ok
- With x ~ y little room for new physics
- CPV very small, not measured

Status of Charm CPV

LHCb measurement of direct CPV in $D^0 \rightarrow h^+h^-$ from 2x10⁶ decays (0.6 fb⁻¹)

- ΔA_{CP} = (-0.82 ±0.21 (stat.) ±0.11 (syst.))%
- CPV evidence at 3.5σ
- First hint for new physics in charm decays
- Theoretical interpretations and more data needed

p a n d a

Status of CPV

Future Developments at LHCb

Rates and Prospects

L. Schmitt, GSI

panda

LHC Luminosity Prospects

With 50 fb⁻¹ expect ~4x10¹⁰ offline selected $D^0 \rightarrow K\pi$ decays or more than 10¹¹ DX

Rates and Prospects

panda

Possible Rates at PANDA

Cross section estimates:

100 – 200 nb DD optimistic,
 10-20 nb pessimistic

Charm yields in one year, based on:

- Total p p cross section: s ~ 70 mb
- Average interaction rate R = 20 MHz

•
$$L_{max} = R/\sigma = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$

Channel	Yield (opt.)	Yield (pess.)	Physics	Beam (GeV/c)
D⁺D⁻ excl.	3x10 ⁸	3x10 ⁷	D→µv	6.5
DX	2x10 ⁹	2x10 ⁸	Mixing, CPV, rare decays	> 7
$D_s \overline{D}_s$	3x10 ⁷	3x10 ⁶	D _s →µv	7.5

panda

Comparison to LHCb: 5x10⁹ DX at 3 fb⁻¹ in 2013,

10¹¹ at 25-30 fb⁻¹ in 2023

Rates and Prospects

Conclusions

Present outlook:

- Main uncertainty on physics reach of PANDA in electroweak D-channels is the DD production cross section
 - Full range of predictions from few nb to ~1 μb
 - How to achieve optimal luminosity for D-production?
- In any case LHCb is now where we would be in 2020 ff

Conclusions for us:

- Selection strategy similar to D-spectroscopy,
 i.e. no special efforts to tune for electroweak D-channels
- Measure $p\overline{p} \rightarrow D\overline{D}$ as soon as possible
- Keep an eye on the field and see what is left for us

