Hypernuclei: Stability and prospects to study the compound nuclear formation and its fragmentation

Kaushal Thakkar and P C Vinodkumar Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India

- Introduction
- Motivation

Part 1

- BE of orbitally excited Hypernuclei
- Various potential to study Y-N interaction
- Result

Part 2

- Alpha Decay of heavy Hypernuclei
- Half life time of heavy Hypernuclei
- Summary

INTRODUCTION

Nucleus

many-body system of protons and neutrons

Hypernucleus

Hyperon in a nucleus

a new degree-of-freedom, "strangeness".

MOTIVATION

- Properties of hypernucleus are of considerable interest among the intermediate energy regime as it stands at the intersection of nuclear and particle physics.
- The enhanced experimental efforts have thus created renewed interest in the theoretical computations of the various properties of hypernuclei. [1, 2].

[1] E. Hiyama and T. Yamada, Progress in Part. and Nuc. Phy. **63**, 339-395 (2009).

[2] O. Hashimoto and H. Tamura, Progress in Part. and Nuc. Phy. 57, 564-653 (2006).

BE OF HYPERNUCLEI

 To calculate the binding energy of hypernuclei, we have solved Schrodinger equation numerically.

$$\left[-\frac{\hbar^2}{2\,\mu}\,\nabla^2 + V(r)\right]\psi(r) = \epsilon\,\psi(r)$$
$$\mu = \frac{m_{core}\,m_{\Lambda}}{m_{core}+m_{\Lambda}}$$

VARIOUS POTENTIAL FOR A-N INTERACTION

1. The Maeda–Schmid s-wave potential (MS) (sum of two Woods–Saxon functions)

$$V_{N\Lambda}(r) = \frac{V_{rep}}{1 + exp((r - R_{rep})/a_{rep})} - \frac{V_{att}}{1 + exp((r - R_{att})/a_{att})}$$

2. The Isle potential (sum of two Gaussians)

$$V_{N\Lambda}(r) = V_R \exp\left[-\left(\frac{r}{b_R}\right)^2\right] - V_A \exp\left[-\left(\frac{r}{b_A}\right)^2\right]$$

3.
$$U(r) = -D\left[Cosh^2\left(\frac{r}{R}\right)\right]^{-1}$$

4. Woods-saxon Potential V(
$$r$$
) = $-\frac{V_0}{1+exp((r-R_{cen})/a_{cen})}$

[1] S. Maeda et al. Few-Body Problems in Physics, vol. II, Elsevier, Amsterdam, 1984, 379.

[2] Y. Kurihara, Y. Akaishi, H. Tanaka, Phys. Rev. C 31 (1985) 971.

[3] C G Koutroulos , J. Phys. G. Nucl. Part. Phys. 17 (1991) 1069-1076

[4] C. H. Cai et al. Europhys. Lett., 64 (4), pp. 448-453 (2003)

THE PHENOMENOLOGICAL POTENTIAL

$$V_{cen} (r - R_{cen}) = \frac{-V_0}{\frac{r - R_{cen}}{1 + e^{\frac{r - R_{cen}}{a_{cen}}}}}$$
$$V_0 = U_0 + U_1 \frac{A - 2Z}{A}$$
$$R_{cen/so} = r_0 A^{\frac{1}{3}}$$

$$V_{so}(r) = -\frac{2 U_{so}}{r a_{so}} [j(j+1) - l(l+1) - s(s+1)] * \frac{Exp[\frac{r-R_{so}}{a_{so}}]}{\left[1 + Exp[\frac{r-R_{so}}{a_{so}}]\right]^2}$$

C. H. Cai et al. Europhys. Lett., 64 (4), pp. 448–453 (2003)

Nature of Woods-Saxon Potential

Variation of Potential depth Vs. A

RESULT

TABLE I: B	inding Er	nergy $(-B)$	Λ) of S and	d P-state	s Λ Hype	rnuclei in M	eV.
Nuclei	BE for	S-State	in MeV	BE for	P-State	in MeV	
	Present	Other	Expt. [5]	Present	Other	Expt. [5]	
11 B	10.029	10.163 [6]	10.20				
		10.28 [7]					
$^{12}_{\Lambda}C$	10.8076	10.928 [6]	10.80				
		10.97 [7]					
16 A	12.5031	13.243 [6]	12.50	5.812	2.544 [6]	2.50	
		13.15 [7]			1.92[7]		
$^{28}_{\Lambda}Si$	16.0025	16.930 [6]	16.00	7.490	8.099 [6]	7.00	
		16.95 [7]			6.039 [7]		
					5.83 [8]		
$^{32}_{\Lambda}S$	17.5251	17.665 [6]	17.50	8.220	9.324 [6]	8.10	
		17.77 [7]			7.047 [7]		
					7.28 [8]		
$^{40}_{\Lambda}Ca$	18.7022	18.785 [6]	18.70	8.780	11.248 [6]	11.00	
		19.09 [7]			8.718 [7]		
					9.56 [8]		

6) C. H. Cai, L. Li, Y. H. Tan and P. Z. Ning, Europhys. Lett., 64 (4): 448-453 (2003).
7) C G Koutroulos, J. Phys. G. Nucl. Part. Phys. 17: 1069-1076, (1991).

ALPHA RECAY OF HYPERNUCLEI

we extend our understanding of the decay theory of the normal α -emitter nuclei to study the decay properties of heavy hypernuclei such as

- 1. q-value for the decay,
- 2. Tunnelling probabilities,
- 3. Half life time and
- 4. Decay constant of heavy Λ-hypernuclei

ALPHA RECAY OF HYPERNUCLEI

Alpha (hyper-alpha) decay of a hypernucleus can be expressed as

$$(A_Y, Z_Y) \rightarrow {}^4_2He + (A_Y - 4, Z_Y - 2)$$

$$(A_Y, Z_Y) \rightarrow {}^4_Y He + (A_Y - 4, Z_Y - 2)$$

From the Q value it is found that spontaneous decay of hyper- α from the hypernuclei are not energetically possible.

Q-VALUE FOR THE α decay

To calculate the Q-value for α decay of heavy hypernuclei we should know the value of BE and SE of hypernuclei.

$$\mathsf{BE}\begin{pmatrix}A_Y\\Z_Y\end{pmatrix} = \mathsf{BE}\begin{pmatrix}A_Z\\Z\end{pmatrix} + S_Y\begin{pmatrix}A_Y\\Z_Y\end{pmatrix}$$

The first term corresponding to the binding energy of core nucleus (excluding hyperon) and the second term indicates separation energy of hyperon in the hypernucleus.

SE OF HPERNUCLEI

 using the experimentally known Λ-separation energies of various hypernuclei we have obtained an empirically fitted formula for the lambda separation energy for A ≥ 56.

 $S_{\Lambda} = 19.27 \; e^{0.0015 \, A}$

TUNNELLING PROBABILITY

$$T = Exp\left[-\frac{2}{h}\int_{b}^{R} [2 m_{\alpha} V(r) - E_{\alpha}]^{0.5}\right] dr$$

$$V(r) = \frac{2 Z_d e^2}{4 \pi \epsilon r} \qquad \qquad E_{\alpha} = \frac{m_d Q}{m_{\alpha} + m_d}$$

- Z_d atomic number of (hyper) nucleus.
- m_d mass of the daughter (hyper) nucleus.
- m_{α} mass of the α particle.
- E_{α} KE of the α particle.

HALF LIFE TIME

$$T_{1/2} = \frac{\ln 2}{\nu T P_0}$$

- ν Frequency of α -collision at the hypernuclear surface.
- *T* tunnelling probability.
- P_0 is the α cluster preformation probability.

RESULT

Reaction	Q	TP	$T_{\frac{1}{2}}$ Sec	$\lambda \ Sec^{-1}$	$\frac{T_{1/2}(\Lambda)}{T_{1/2}(\Lambda=0)}$
$^{232}_{\Lambda}Th \rightarrow ^{4}_{2}He + ^{228}_{\Lambda}Ra$	4.045	3.04025×10^{-42}	6.87124×10^{21}	1.00855×10^{-22}	2.17
$^{228}_{\Lambda}Ra \rightarrow ^{4}_{2}He + ^{224}_{\Lambda}Rn$	4.262	3.55441×10^{-39}	$5.69377 imes 10^{18}$	1.21712×10^{-19}	0.042
$^{228}_{\Lambda}Ac \rightarrow ^{4}_{2}He + ^{224}_{\Lambda}Fr$	4.877	3.34728×10^{-35}	$5.65206 imes 10^{14}$	1.2261×10^{-15}	0.406
$^{224}_{\Lambda}Ra \rightarrow ^{4}_{2}He + ^{220}_{\Lambda}Rn$	5.800	2.44318×10^{-29}	7.06046×10^8	9.81523×10^{-10}	0.867
$^{220}_{\Lambda}Rn \rightarrow ^{4}_{2}He + ^{216}_{\Lambda}Po$	6.782	4.29783×10^{-24}	3.69×10^3	1.87792×10^{-4}	0.028
$^{216}_{\Lambda}Po \rightarrow ^{4}_{2}He + ^{212}_{\Lambda}Pb$	7.368	3.37336×10^{-21}	4.48419	0.154543	0.0233

Reaction	Q	TP	$T_{\frac{1}{2}}$ Sec	$\lambda \ Sec^{-1}$	$\frac{T_{1/2}(\Lambda)}{T_{1/2}(\Lambda=0)}$
$\frac{238}{\Lambda}U \rightarrow \frac{4}{2}He + \frac{234}{\Lambda}Th$	4.060	3.28743×10^{-43}	6.38966×10^{22}	1.08456×10^{-23}	59.523
$^{234}_{\Lambda}U \rightarrow ^{4}_{2}He + ^{230}_{\Lambda}Th$	4.770	1.47727×10^{-37}	1.30582×10^{17}	5.30701×10^{-18}	4.28
$^{226}_{\Lambda}Ra \rightarrow ^{4}_{2}He + ^{222}_{\Lambda}Rn$	5.000	7.23074×10^{-34}	2.57677×10^{13}	2.68941×10^{-14}	0.13875
$^{222}_{\Lambda}Rn \rightarrow ^{4}_{2}He + ^{218}_{\Lambda}Po$	5.980	1.71563×10^{-27}	9.87359×10^{6}	7.01872×10^{-8}	0.0108
$^{218}_{\Lambda}Po \rightarrow ^{4}_{2}He + ^{214}_{\Lambda}Pb$	6.500	2.43351×10^{-24}	6.637×10^3	1.044×10^{-4}	2.71×10^{-3}

RESULT

SUMMARY

We find that the hypernuclei are stable against the hyper-alpha decay because the Λ -binding energy of hyper-alpha is much smaller than those with heavy hypernuclei, that reduces the formation of hyper-alpha cluster within the heavy hypernuclei.

It is found that the presence of a hyperon, Λ inside the normal α emitter could change their life times considerably.

For instance, the half life times of ${}^{232}_{\Lambda}Th$, ${}^{234}_{\Lambda}U$ and ${}^{238}_{\Lambda}U$ are found to be 2, 4 and 60 times larger than their normal counterpart of ${}^{232}Th$, ${}^{234}U$ and ${}^{238}U$ respectively.

WORK PLAN

We found that the heavy hypernucleus are stable against the α cluster decay. In future we will plan to study the decay of heavy cluster like ${}^{12}_{Y}C$, ${}^{16}_{Y}O$, ${}^{28}_{Y}Si$ etc,. from heavy hypernucleus.

We will try to study the fusion of light hypernuclei and will study the change in Coulomb energy.

Thank You