

QCD Dynamics

T. Johansson

Study of the transition region between quark-gluon and hadronic degrees of freedom.

Topics treated:

- Antihyperon-hyperon production
- Two pion production

Antihyperon-hyperon production

 $\overline{p}p \to \overline{Y}Y$

Practically nothing is known about multiple strange and charmed channels

 $\overline{p}p \to \overline{Y}Y$

• The weak hyperon decay gives access to polarisation and spin correlations.

 $\overline{p}p \rightarrow YY$

- The weak hyperon decay gives access to polarisation and spin correlations.
- rightarrow Access to spin degrees of freedom in \overline{ss} and \overline{cc} quark-pair creation.
- Many observables

 ▷ PWA of the data to extract relevant quantum numbers (resonances)
 ▷ high discriminating power between models (hadron or quark-gluon based)

 \Rightarrow High x-sec for $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$: CP-violation tests

Powerful reactions for Baryon Spectroscopy

Physics Performance Report for PANDA:

- Single and double strange hyperon channels can be well reconstructed.
- Acceptance over the full angular range.

• Low background and high event rate.

Channel $1.64 \mathrm{GeV}/c$	Rec. eff.	$\sigma [\mu b]$	Signal
$\overline{p}p\to\Lambda\overline{\Lambda}$	0.11	64	1
$\overline{p}p \rightarrow \overline{p}p\pi^+\pi^-$	$1.2\cdot 10^{-5}$	~ 10	$4.2\cdot10^{-5}$
Channel 4 GeV/c			
$\overline{p}p\to\Lambda\overline{\Lambda}$	0.23	~ 50	1
$\overline{p}p \rightarrow \overline{p}p\pi^+\pi^-$	$< 3 \cdot 10^{-6}$	$3.5\cdot 10^3$	$<2.2\cdot10^{-3}$
$\overline{p}p \rightarrow \overline{\Lambda}\Sigma^0$	$5.1 \cdot 10^{-4}$	~ 50	$2.2 \cdot 10^{-3}$
$\overline{p}p \rightarrow \overline{\Lambda}\Sigma(1385)$	$< 3\cdot 10^{-6}$	~ 50	$< 1.3 \cdot 10^{-5}$
$\overline{p}p \rightarrow \overline{\Sigma}^0 \Sigma^0$	$< 3 \cdot 10^{-6}$	~ 50	$< 1.3 \cdot 10^{-5}$
Channel $15 \text{GeV}/c$			
$\overline{p}p\to\Lambda\overline{\Lambda}$	0.14	~ 10	1
$\overline{p}p \rightarrow \overline{p}p\pi^+\pi^-$	$< 1\cdot 10^{-6}$	$1 \cdot 10^3$	$< 2\cdot 10^{-3}$
$\overline{p}p \to \overline{\Lambda} \Sigma^0$	$2.3\cdot10^{-3}$	~ 10	$1.6 \cdot 10^{-2}$
$\overline{p}p \rightarrow \overline{\Lambda}\Sigma(1385)$	$3.3\cdot10^{-5}$	60	$1.4\cdot10^{-3}$
$\overline{p}p \rightarrow \overline{\Sigma}^0 \Sigma^0$	$3.0\cdot10^{-4}$	~ 10	$2.1\cdot10^{-3}$
DPM	$< 1 \cdot 10^{-6}$	$5\cdot 10^4$	< .09
Channel $4 \mathrm{GeV}/c$	Rec. eff.	σ (µb)	Signal
$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$	0.19	~ 2	1
$\overline{p}p \rightarrow \overline{\Sigma}^+(1385)\Sigma^-(1385)$	$) < 1 \cdot 10^{-6}$	~ 60	$< 2 \cdot 10^{-4}$

Reaction	Rate $[s^{-1}]$	
$\overline{p}p \rightarrow \Lambda \overline{\Lambda}$	580	
$\overline{p}p\to\Lambda\overline{\Lambda}$	980	
$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$	30	
$\overline{p}p\to\Lambda\overline{\Lambda}$	120	
	$\begin{array}{l} \operatorname{Reaction} \\ \overline{p}p \to \Lambda\overline{\Lambda} \\ \overline{p}p \to \overline{\Lambda} \\ \overline{p}p \to \overline{\Xi}^+ \Xi^- \\ \overline{p}p \to \Lambda\overline{\Lambda} \end{array}$	

Sophie Grape, Thesis UU, 2009

Since Physics Performance Report:

Reconstruction of spin correlations in $\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$.

 $\overline{p}p \rightarrow \overline{\Lambda}_c^- \Lambda_c^+ \rightarrow (\overline{\Lambda}\pi^-)(\Lambda\pi^+)$ well reconstructed @ 12 GeV/c

Reconstruction efficiency: 0.35

Event rate: ≈ 25/day (100 nb x-sec assumed)

 $\overline{p}p \rightarrow \overline{\Omega}^+ \Omega^-$ well reconstructed:

Reconstruction efficiency: 0.30 Event rate: ≈ 80/h (2 nb x-sec assumed)

Expressions for extracting polarisation parameters derived using the spin density formalism. 7 non-zero parameters: 3 parameters from the $\Omega \rightarrow \Lambda K$ decay 4 parameters from combined $\Omega \rightarrow \Lambda K$ and $\Lambda \rightarrow p\pi$ angular distributions.

The total Ω polarisation can be obtained by summing the square of these 7 parameters.

Erik Thomé, Thesis UU, 2012

Spin determination of Ω ?

To be done:

- Verify the findings for $\overline{p}p \rightarrow \overline{Y}Y$ using PANDAroot
- Background studies for $\overline{p}p\to \overline{\Omega}^+\Omega^-$ and $\overline{p}p\to \overline{\Lambda}_c^-\Lambda_c^+$

Strategy for data taking (in sequence):

- 1. Verify PS185 results:
- 2. Double strangeness production:
- 3. Triple charm production:
- 4. Charm production

$$\overline{pp} \rightarrow \overline{\Lambda} \Lambda \otimes 1.64 \text{ GeV/c}$$

 $\overline{pp} \rightarrow \overline{\Xi}^+ \Xi^-$
 $pp \rightarrow \overline{\Omega}^+ \Omega^-$
 $\overline{pp} \rightarrow \overline{\Lambda}_c^- \Lambda_c^+$

Remarks:

- $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ is an excellent reaction to verify tracking.
- A good understanding of $\overline{p}p \rightarrow \overline{Y}Y$ reconstruction is a "sine qua non" for Baryon Spectroscopy.
- 7 theory papers published on $\overline{p}p \to \overline{Y}Y$ because of the prospects at PANDA

Two-pion production in $\overline{p}p$ annihilation at large angles

Data are needed to test constituent quark counting rules of pQCD [1] and "Landsoff indepedant scattering mechanism" [2].

There is lack of large angel scattering data for a conclusive comparison to these approaches.

 $\Rightarrow 2\pi$ production at large angles can provide this test.

Predicts a s⁻ⁿ scaling n + 2 = # of elementary constituents in initial + final state [1]

 $rac{>} s^{-8}$ scaling for 2π production

An observation of an oscillatory pattern angle could signal of an interference between the two mechanisms (seen in the energy dependence of p-p scattering at a fixed backward angle).

[1] S. Brodsky, G. Farrar, Phys. Rev. Lett. 31 (1973) 1153
V.A. Malteev, R.M. Muradian, A.N. Tavkhelidze, Nouv. Cim. 7 (1972) 713
[2] P. Landshoff, Phys. Rev. D10 (1974) 1024

 An event generator for this 2π channel, based on a Regge approach, has been implemented in PANDAroot.

≈ 1 week at full luminosity at s = 13.5 GeV² required.

The uniqueness of the antiproton beam at HESR makes these proposed measurements unique.