## The Scintillating Tile Detector

Carsten Schwarz, GSI

- Motivation
- Setup
- Scintillator
- Photon Detector
- Prototypes



# Panda Detector

PANDA interaction rate: Average 20MHz Peak 50-100MHz



# **Motivation: Event Timing**

Events 1,2,3,4,5,6,7,8... for 50Mhz interaction rate with 6 tracks



Klaus Götzen, Influence of Particle Timing on Event Building PANDA collaboration meeting March 2011, GSI





## Relative Gain of $1ns/2ns \rightarrow 100 ps$





Klaus Götzen, Influence of Particle Timing on Event Building PANDA collaboration meeting March 2011, GSI 26

# **Motivation: Conversion Detection**



SciTil important for relative timing and PID





Readout at two positions more photons less light path fluctuations larger detection efficiency Vith electronics 8 ch. ASIC data transfer IC

C. Schwarz









### PANDA Collaboration Meeting, Goa 2013

# Photon number

Tile 30 x 30 x 5 mm<sup>3</sup>



Minimum ionizing particle

 $\Delta E = 1 \text{ MeV}$ = 10<sup>4</sup> photons

generated

70% hit rim = 7000 photons

on rim

PD area =  $18 \text{ mm}^2$ rim area =  $600 \text{ mm}^2$ 

= 210 photons

geometry

55% PD efficiency

PDE

= 115 photons

 $\begin{array}{l} 30 \ x \ 30 \ x \ 5 \ mm^3 \rightarrow 115 \ photons \\ 20 \ x \ 20 \ x \ 5 \ mm^3 \rightarrow 180 \ photons \end{array}$ 

# **Scintillator Material**

For subnanosecond timing: timing on first arriving photon

 $\rightarrow$  Time resolution depends on number of photons.



Time spread of first photon (RMS) for many events ~1/N

Unfortunately  $\rightarrow$  not so simple...

Rise time comparable to wanted time resolution

 $\rightarrow$  Additional smearing of first photon



Time spread of first photon (RMS) for many events ~1/sqrt(N)

### Saint Gobain Scintillators (Bicron)

#### Scintillation Properties –

| ·                                 | BC-400 | BC-404 | BC-408 | BC-412 | BC-416 | BC-418 | BC-420 | BC-422 |
|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Light Output, %Anthracene         | 65     | 68     | 64     | 60     | 38     | 67     | 64     | 55     |
| Rise Time, ns                     | 0.9    | 0.7    | 0.9    | 1.0    | —      | 0.5    | 0.5    | 0.35   |
| Decay Time (ns)                   | 2.4    | 1.8    | 2.1    | 3.3    | 4.0    | 1.4    | 1.5    | 1.6    |
| Pulse Width, FWHM, ns             | 2.7    | 2.2    | ~2.5   | 4.2    | 5.3    | 1.2    | 1.3    | 1.3    |
| Wavelength of Max. Emission, nm   | 423    | 408    | 425    | 434    | 434    | 391    | 391    | 370    |
| Light Attenuation Length, cm*     | 160    | 140    | 210    | 210    | 210    | NA**   | 140    | NA**   |
| Bulk Light Attenuation Length, cm | 250    | 160    | 380    | 400    | 400    | 100    | 110    | 8      |

Up to now BC408 was used.

Other producer Eljen (ordered) and Dubna (planned)

GSI (H.O), Dubna

# **Photon Detector**

- Silicon Photomultiplier
  - High PDE
  - Good timing resolution
  - High rate capability
  - Work in high magnetic fields
  - Small, robust, low bias voltage
  - Noisy
  - Temperature dependent



→ Remember previous talk of Herbert Orth

## Prototype 1 (20x20x5mm<sup>3</sup>)



BC408 + Superglue

Hamamatsu SiPM S10931-050P S10362-33-050C

Photonique Fast amplifier 611

Readout NINO + HADES TRB GSI, CERN DIRC prototype beam times ----> SciTil time resolution of 600ps :(



## **Test Stand**



GSI Summerstudent program 2011: Stefan Diehl, Giessen  $\rightarrow$  more systematic search for missing time resolution

Trigger done by majority coincidence (=4) CFD set to 1 photon

Hamamatsu S10931-050P Photonique AMP0611 (fast)

Shielded bias/5V



Hamamatsu

Hamamatsu S10931-050P Photonique AMP0604 (high)

### Timing resolution of 3 detectors



 $\sigma_1^2 = \sigma_{\text{electr.}}^2$ 

Measure 
$$t_1 - t_2, t_1 - t_3, t_2 - t_3, t_1 \rightarrow \sigma_{12}^2 \sigma_{13}^2 \sigma_{23}^2 \sigma_1^2$$

And subtract  $2\sigma^2_{electr.}$ 

$$\sigma_{12}^{2'} \sigma_{13}^{2'} \sigma_{23}^{2'}$$

$$\sigma_{12}^{2'} + \sigma_{13}^{2'} - \sigma_{23}^{2'} = (\sigma_{1}^{2} + \sigma_{2}^{2}) + (\sigma_{1}^{2} + \sigma_{3}^{2}) - (\sigma_{2}^{2} + \sigma_{3}^{2}) = 2 \sigma_{1}^{2}$$

For 4 detectors each  $\sigma^2$  can be determined several times  $\rightarrow$  error bars

| $\sigma_{i-el}$ | time resolution /ps |
|-----------------|---------------------|
| $\sigma_{1-el}$ | $368 \pm 29$        |
| $\sigma_{2-el}$ | $135 \pm 30$        |
| $\sigma_{3-el}$ | $210 \pm 54$        |
| $\sigma_{4-el}$ | $115 \pm 30$        |

### GSI Summerstudent program 2011: Stefan Diehl, Giessen

Resolution (FTA820/CFD/ NIM-ECL converter)

<sup>90</sup>Sr source, results corrected for electronic time resolution

**Electronic time** 



High gain AMP604 most promising





| SiPM               | Rise-time<br>[ns] | Decay-time<br>[ns] |
|--------------------|-------------------|--------------------|
| 1 (fast amp.)      | 1,1 +- 0,05       | 11,1 +- 0,5        |
| 2 (fast amp.)      | 1,1 +- 0,5        | 10,8 +- 0,5        |
| 3 (high gain amp.) | 1,2 +- 0,05       | 18,4 +- 1,0        |
| 4 (high gain amp.) | 1,3 +- 0,3        | 23,9 + 3,0         |

X 5



AMP611 fast low gain 1 ns x 5 AMP604 "slower" high gain 1.3 ns x 30

---> slew rate is important

Good results with fast amplifier (F. Guber, INR Moscow) 5ns, x200

Vienna amplifier, based on AMP604

PANDA Collaboration Meeting, Goa 2013

## Prototype 2 (30x30x5mm<sup>3</sup>)



BC408 Coupled with BC606

Hamamatsu SiPM 2x S10931-050P 1x S10362-33-050C 1x Ketek 3x3 60A2

Photonique Slow amplifier 604 INR Moscow-Amplifier (F.Guber)

Readout NINO + HADES TRB

# **CERN 2012: DIRC experiment**

Beam 10 GeV pion (+ electrons)







| σ <sub>1</sub> | 344 ± 75 ps  | S10362-33-100C   | No. Contraction of the second             |
|----------------|--------------|------------------|-------------------------------------------|
| $\sigma_{2}$   | 251 ± 50 ps  | S10931-050P      |                                           |
| $\sigma_{_3}$  | 230 ± 111 ps | S10362-33-100C   | Errors from different<br>σij combinations |
| $\sigma_{_4}$  | 302 ± 43 ps  | Ketek 3x3 / 60A2 | $\rightarrow$ systematical                |

|                | data         |                  | Picoquant pulser run |
|----------------|--------------|------------------|----------------------|
| σ <sub>1</sub> | 344 ± 75 ps  | S10362-33-100C   | 217 ± 22 ps          |
| $\sigma_{2}$   | 251 ± 50 ps  | S10931-050P      | 120 ± 16 ps          |
| σ              | 230 ± 111 ps | S10362-33-100C   | 86 ± 55 ps           |
| $\sigma_{_4}$  | 302 ± 43 ps  | Ketek 3x3 / 60A2 | 194 ± 10 ps          |

Difference Data ↔ Pulser: Scintillator, noise on cables



## **Prototype "Guber" Experimental Setup**



SiPM Workshop EU-FP7(HP3), Vienna, 16 Feb. 2013 F.G. H.O.

### Amplitude spectra for KETEK SiPMs at small side



SiPM Workshop EU-FP7(HP3), Vienna, 16 Feb. 2013 F.G. H.O.

### Time spectra for KETEK SiPMs at small sides for very narrow ADC bin=20 ch



### ASIC for SiPM readout

**TOF-PET ASIC for PET applications** M.D. Rolo JINST 8 C02050



Per channel: 100 kHz 7 mW

12000 tiles:  $\rightarrow$  84 Watts

C. Schwarz

#### 2nd threshold

validation of events (i.e. dark count rejection) and provision of a second time stamp used for time-over-threshold measurement.  $\rightarrow$  walk correction?

## Conclusions

- •SciTil time resolution 200-300ps
  - Little amplitude information
  - Probably caused by noise on cables
- Fedor Gubers experiment yields ~150ps
  Narrow amplitude window selected
  - There is "walk"
- More R&D (test experiments) necessary
  Integrated electronics like Torino PET-TOF (double threshold discriminator)

# Outlook

| Work package         | Interested institutes         |              |     |
|----------------------|-------------------------------|--------------|-----|
| Simulation           | BARC                          |              |     |
| Module design        | GSI, BARC                     | construction |     |
| Scintillator         | Dubna, Gatchina               |              | R&D |
| Silicon PM           | EU HP3, BARC, Dubna, Gatchina |              |     |
| Readout design       | EU HP3, BARC                  |              |     |
| Mechanical design    | GSI                           |              |     |
| Prototype production | BARC                          |              |     |

Status: DAE - BRNS Workshop on Hadron Physics - 2011

New: Vienna, Mainz, Erlangen for R&D with test stands

SIPM Kick Off Meeting October 2011

→ https://indico.gsi.de/conferenceDisplay.py?confld=1367

| Work Package       | Interested Institutes |
|--------------------|-----------------------|
| SiPM test facility | BARC                  |
|                    |                       |

construction

