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® Saryon form factors analyticity

e The /A baryon special case

® Dispersion relations for the form factors’ ratio

® Parametrization and )(2 definition

® Results and discussIonNs
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Given a baryon 93, the electromagnetic current is F i% (g”) and ng (g?%)are the
and form factors
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(P Tpy © [ By) = et | #7774 200 |t

F(0) = Qg F(0) = kg

0 is the electric charge K IS the anomalous magnetic moment

Breit frame
(pr—p)' =q" = (0,9)

achs form factors

> p GZ(0) = Qg
Br 2N _ 0B 2 B 2

G (q7) = F{(q )+—4M§3,F2 (g°)

Gif(0) = Qg + kg = g

Iz 1S the total magnetic moment
Gi/(a”) = F*(q*) + F(¢%)
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Scattering cross section
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(GE)’ =z (1+2(1 - Dan’012) (Gi7)']
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4E3 sin*(6/2)

Annihilation cross section

do  o’f€ 5 12 1 .5 z|?
5 = T | (1+cos’0)) g4 +—sin ©)|Gi7]
Coulomb correction
o 1
151 ¢ is a final state interaction effect
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The asymptotic form factors behaviour is given in pQCD by
counting rules as q2 — — 00

Helicity conservation Helicity flip
o g x GH(D) o JMHGH x GE(gD/ 4
® 2 gluon propagators distributing the 5
momentum transfer of the virtual photon e |2 gluon propagators] / 4 [ —q

o Gi(g® ~ (¢gH)7? o GZ(q*) ~ (g7

Dirac and Pauli Form Factors Sachs Form Factors Ratio

FZ ~ (¢H*

g G¢'(q°)
~ constant

— B(g? —>—00
Fy i U Gi7(q°) ¢




N the time-like region, GE‘% () and GA‘? (g”) are complex functions

Crossing symmetry: <P(p’) J’““ P(p)> — <P(p’)P(p) ‘J’"‘ 0>

Optical theorem

Im <<P(P/)P(P)‘Jﬂ‘ 0>> ~ 2 <P(p’)P(p)‘]ﬂ‘ n> <n ‘ﬂ,‘ O> N {Im (Fi%) £ ()

. for g* > 4M?
Where | n) are intermediate states, i.e. |n) = 2x,3x, . ..

Asymptotic behaviour in the time-like region

[t as along the straight line
and as along the
straight line 1.5, and S regular and 21im ngj (qz) = zlim GA‘? (qz)
bounded in the angle between the lines, then q =+ q ==
and N the region

between and



Spacelike region Unphysical region Timelike region

g* <0 i < 4% < G q* > G
eRB — eRB BB — eTe M, ete™ o BR
GZ@)|, |G
GZ(q%), Gf (g% ‘G,;f’?(qz) , ‘fo(qz)‘ ‘ ) ‘
arg (GE%/GA‘?)

* Sine of the argument measurable in polarized cross section only



Theoretical threshold -
[(AN) = 0, and the lightest isoscalar
hadronic state is 777~ 7"

Physical threshold
L owest center of mass energy to produce a /A/A\ couple

I 2
qphys i (ZM/\)
e Unphysical and space-like regions have no e [orm factors have nonzero imaginary
y) y)
data parts for ¢© > g7,
e [he relative phase is measured through the . Glf;\(qz) vanishes for q2 —0

weak decay A = pr~, A = pr*



The form factors Gé\, 1y are analytic functions on the qz—complex olane with the cut (qt%l, oo)
on the real axis.

Dispersion relations are based only on unitarity and analyticity =

Dispersion relation for the imaginary part Dispersion relation for the logarithm
q* < 0) q* < 0)
o1 [® Im(G(s)) \/ dh—49° > In |G(s)|
G(g”) =— > ds In (G(qz)) = J ds
nwJ), §S—( T 2 2 2
9in i (S —4q ) S — 4
Theoretical Inputs
e [ime-like data for form factor's moduli from e Analyticity
ete” & BAB

e [hreshold values
e [me-like data for the relative phase from

ete” o B'R e Asymptotic behaviour



Data for modulus and phase of GX/G

Experimental data for the modulus

N 1.0 | Experimental data for the phase
T 1.00 BESIII 2019
5.0 5.5 6.0 . (Gevzfclf) 7.0 7.5 ‘ 0.25
5.0 5.5 6.0 o (Gevirct) 6.5 7.0 )
e Sine of the relative phase accessible
through polarization 2M 1/ 2 sin(20) ‘ Gg/G]Q‘ sin (arg(GR/GL))
P = —
. . y .
e No hints on the determination of the g* (1 + cos?(0)) + 4M3 ‘Gfg‘/ G]\//\[‘ sin®(6)

relative phase



e Consider the complex function R(z) with N poles
{pj}j.\iland M zeroes {z;};, and a branch cut

(%, )
e Taking the integral over the contour I, gives the

1 dIn (R(z))

r—o00 2ITT r dz

dz=M—-N

e By taking each contribution into account

dIn (R
fim = RO L ra(Rico) — are(ROx)

r

(arg(R(c0)) — arg(R(xy)) = 7 (M — N)



Gp(q” Gp(0) =0 INOE
We define the ratio R(g?) = lj\(qz) = lj\ )2 A,y L )
Gi(q?) G (gphy) = Gp(Gphy) R(gpny) = 1

The asymptotic behaviour

G g2
(q7)
lim R(q%) = Ok = 0(1)
q*—too 1\/}(42)
Subtracted dispersion relations for real and part
q Im(R(S))
R(¢?) = R(0 +—J Vg2 2 00
@) = RO+ | o= s, Va* & g, o)

dn

vy J Im(R(s)) _
2 s(s — 2)

The subtracted dispersion relations ensure the normalization at q2 =0

Re (R(g%)) = ds, Vq* € |q3, )

T



Parametrization through the set of Chebyshev polynomials { Y}(x) }

Im(R(q?)) = Y<q2; C. qgsy) -1

R(g?)isreal = Y(q;; C ,qazsy) =
R(g2 )isreal = Y(g% ; C,q2.) =0
thy thy’ ? Qasy

R(g* > gz, isreal = Y(¢* > g C.qz,) =0

N
> CT(x(@), ah <q® < gl

Y
J=0
2 2
4 — d4n
2 S 2 x(q*) =2 2 tz -1
q- = Qasy Dasy ~ Yin

q* € [g3, q%,) = x(g*) € [- L1]

2 4y Y(s; C,q2,)
Re (R(qg)) = @PrJ zasy
r Jp sts—q})

sl =1

sy J%?sy Y(s; C,qz,)
Pr

— 2

Experimental constraints for the time-like region (q2 > qghy)

3 experimental points for the modulus and 2 for the phase from Babar (2007),
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X ( C, Qasy> =X | R| +)(¢ + Tphy)(phys + Tasy)( asy + TeurvXcurv

2

( )
s [ /XD +re) - &

= I

X(g*) = Re(R(¢%))

J

, 7. [ sin (arctan(Y(q ) X(qf )) sin(¢,) ?
Z 6 sin(¢hy)

y)
Constraint at g* = qzh — 2 ( — X(g> ) The values of 7y and Tygy are
P phy phy chosen so that the theoretical

| 5 ) N 2 conditions are exactly fulfilled.
Constraint at g* = gy, )(asy = (1 - X (qasy )
The minimization procedure
72 sz( ) 2 implies the solution of an ill-
asy S ]
Osollation damping —— 2, = J ) a5 P popem e has o be
S .

2
din



The theoretical constraints Y1 (qth, qasy) =Y (qphy , qgsy) =Y (qazsy; OF qazsy) =0
remove three degrees of freedom, allowing to determine three coefficients, 1.e.

The asymptotic threshold IS used as a free parameter.

f we consider (N + 1) Chebyshev polynomials, we are left with

We used N = 5, so we have four free parameters and

o Tohy = 10* = The real part of the ratio is forced to the unity at g% = q§hy
o 7,y = 0 = Noconstraint for the real part at g* = qfsy

o 7., = 0.05= Dumping relevant only for high degree polynomials



The curvature weight z,

Thnoa A1 inn/at ir;m A1t

regularises the fit function behaviour.

urv
[ T ypy 1S TOO physical information are canceled.
I T ypy 1S TOO the solution has too much noise.
40 oseee— "« | The polynomial degree N and the curvature weight

> 30 T. v Are mutually dependant.
< 20} -
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A. Mangoni, S. Pacetti, and E. Tomasi-Gustafsson, First exploration of the physical Riiemann surfaces of the

ratio G{} /Gy , Physical Review D 104, 116016 (2021)

The value of 7., &t a given polynomial degree is
given by a “phase transition” of the asymptotic

threshold



At the thresholds qt% clgle qfsy the values of the ratio are real, so the relative phases
are integer multiples of of & radians.

N B | arg G]_{Z\ (Qt%l,asy)
—
T G143 o))

The ;(2 minimization alongside with the theoretical constraints allows to produce the
(N, Nasy) possible pairs compatible with the data points.

A Monte Carlo procedure allows to obtain the probability of occurrence of each pair
(Nth’ Nasy)'

N Ny %
-1 2 50.5%
-1 1 16.0%
0 3 26.8%
-1 0 4%



MOduh anol e

s 03)
26.8%:

ative phases




. 2 N
The charge radius squared <rE> of an In the Breit frame, g = (O,q), the

S . dGL(q*
extended particle is proportional to the <”E>2 =6 £4) electric form factor is the Fourier
first derivative of the electric form factor dg? transform of the spacial charge
2 2 — q2:O ; : .
G (q ) atqg” = 0. distribution.

For a neutral baryon the Sachs form factors are normalized as Gg(0) = 0, Gy,(0) = u # 0, then taking
the derivative of the ratio R(g?) = GE(qz)/ GM(qz)

=0 at ¢2=0
— )
R@P| 1 (dGe(d?)  Gled) dGy(qd) _ 1 dGgg)| 1)
dg> |  Gu(g)\ dg Gu(g®  dg? Gu(g?)  dg? po6
q*=0 g2=0 q*=0
In terms of the dispersion relations for the imaginary part, the first derivative of the ratio
R(g?) at g* = 0'is computed as
dR(a? 6u [ Im (R(s) 61 < ! T(x)dx 2 2
<rE>2=6IM (qz) :_'u[ (2 )dS= MZZCWJ[ J > > Aq2=QClsy Qﬂ’l
dq o T 7, S ﬂAq =0 1 (X + 1+ qth/Aq ) 2



(Charae radinie of a ner tral harnyon

7 = Sign ()’ )\/

()"

The A baryon charge radius is comparable

with the neutron one 17’2,:.

N
—_— rE

(=,0)
(=m,)
(—m, 2m)
(—, 3m)
(0, 3m)
(7, 37)

o

—o—

(f/)(qi),qﬁ(qazsy)) —0.3 =0.2 0.1

0.1 0.2 03 04
7o (fm)

4.0%
16.0%
00.9%

0.7%
26.8%

1.6%

The Fg\ values suggest that the negative charge of the A baryon’s s quark lies closer to the

center than the d quark of the neutron.



The bands represent the one-sigma-error computed with statistical analysis of the Monte Carlo
orocedure.

The dispersive procedure, connecting time-like experimental values and theoretical constraints,
allows to assign different determinations to the phase, and hence to the measured values of the
ohase. This gives information about the space-like behaviour of the form factors ratio.

Assuming no zeroes for the magnetic form factor, the allows to count the
number of zeroes of the electric form factor, aside from the theoretical one at q2 =0

A¢ — ¢(OO) — ¢(qt%1) /s <Nasy R th) > 7

The most probable value for Ny, — Ny, is 3, hence there are at least for
G (q°)
lo do list:

e Update the plots with the new data from BESIII collaboration.

e Unravel the systematic uncertainty given by the degree of the polynomial used for the fit.
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your attention



