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Overview

•Baryon form factors analyticity 

•The  baryon special case 

•Dispersion relations for the form factors’ ratio 

•Parametrization and  definition 

•Results and discussions

Λ

χ2



Baryon - photon vertex 

⟨Pi Jμ
EM (0) Pf⟩ = eū(pf )[γμFℬ

1 (q2)+
iσμνqν

2Mℬ
Fℬ

2 (q2)] u(pi)

Given a baryon , the electromagnetic current isℬ  and are the 
Dirac and Pauli form factors
Fℬ

1 (q2) Fℬ
2 (q2)

Fℬ
1 (0) = Qℬ Fℬ

2 (0) = κℬ

 is the electric chargeQℬ  is the anomalous magnetic momentκℬ

Breit frame
(pf − pi)μ = qμ = (0, ⃗q)

Sachs form factors

Gℬ
E (q2) = Fℬ

1 (q2) +
q2

4M2
ℬ

Fℬ
2 (q2)

Gℬ
M (q2) = Fℬ

1 (q2) + Fℬ
2 (q2)

Gℬ
E (0) = Qℬ Gℬ

M (0) = Qℬ + κℬ = μℬ

 is the total magnetic momentμℬ



Cross section 
Scattering cross section

Annihilation cross section 

Coulomb correction

dσ
dΩ

=
α2E′ e cos2(θ/2)
4E3

e sin4(θ/2) [(Gℬ
E )2 − τ (1 + 2 (1 − τ) tan2(θ/2)) (Gℬ

M )2] 1
1 − τ

dσ
dΩ

=
α2β𝒞
16E2 [(1 + cos2(θ)) Gℬ

E

2
+

1
τ

sin2(θ) Gℬ
M

2]

𝒞 =
πα
β

1
1 − e−πα/β  is a final state interaction effect𝒞



Asymptotic behaviour
The asymptotic form factors behaviour is given in pQCD by 
counting rules as q2 → − ∞

Helicity conservation Helicity flip

•  

• 2 gluon propagators distributing the 
momentum transfer of the virtual photon 

•

Jλ,λ(q2) ∝ Gℬ
M (q2)

Gℬ
M (q2) ∼ (q2)−2

•  

• [2 gluon propagators] /  

•

Jλ,−λ(q2) ∝ Gℬ
E (q2)/ −q2

−q2

Gℬ
E (q2) ∼ (q2)−2

Dirac and Pauli Form Factors Sachs Form Factors Ratio

Fℬ
1 ∼

q2→−∞
(q2)−2

Fℬ
2 ∼

q2→−∞
(q2)−3

Gℬ
E (q2)

Gℬ
M (q2)

∼
q2→−∞

constant



Form factor in the time-like region
In the time-like region,  and  are complex functionsGℬ

E (q2) Gℬ
M (q2)

Crossing symmetry:  ⟨P(p′ ) Jμ P(p)⟩ → ⟨P̄(p′ )P(p) Jμ 0⟩
Optical theorem

Im (⟨P̄(p′ )P(p) Jμ 0⟩) ≈ ∑
n

⟨P̄(p′ )P(p) Jμ n⟩ ⟨n Jμ 0⟩ ⇒ {
Im (Fℬ

1,2) ≠ 0

for q2 > 4M2
π

Where  are intermediate states, i.e.  n⟩ n⟩ = 2π, 3π, . . .

Phragmén Lindelöf theorem
If  as  along the straight line 

 and  as  along the 
straight line , and  is regular and 
bounded in the angle between the lines, then 

 and  in the region 
between  and 

f(z) → f1 z → ∞
L1 f(z) → f2 z → ∞

L2 f(z)

f1 ≡ f2 = f12 f(z) → f12
L1 L2

Asymptotic behaviour in the time-like region

lim
q2→+∞

Gℬ
M (q2) = lim

q2→−∞
Gℬ

M (q2)



Analyticity of form factors
Spacelike region Timelike regionUnphysical region

q2 < 0 q2 > q2
physq2

th < q2 ≤ q2
phys

e+e− ↔ ℬℬ̄eℬ → eℬ ℬℬ̄ → e+e−ℳ0

Gℬ
E (q2), Gℬ

M (q2) Gℬ
E (q2) , Gℬ

M (q2)
Gℬ

E (q2) , Gℬ
M (q2)

arg (Gℬ
E /Gℬ

M )*

 Sine of the argument measurable in polarized cross section only*



 Form FactorsΛ
Theoretical threshold

q2
th = (2Mπ + Mπ0)2

Physical threshold

q2
phys = (2MΛ)2

, and the lightest isoscalar 
hadronic state is  
I(ΛΛ̄) = 0

π+π−π0

Lowest center of mass energy to produce a  coupleΛΛ̄

• Unphysical and space-like regions have no 
data 

• The relative phase is measured through the 
weak decay , Λ → pπ− Λ̄ → p̄π+

• Form factors have nonzero imaginary 
parts for  

•  vanishes for  

q2 ≥ q2
th

GΛ
E (q2) q2 = 0



Dispersion relations
The form factors  are analytic functions on the -complex plane with the cut  
on the real axis.

GΛ
E,M q2 (q2

th, ∞)

Dispersion relation for the imaginary part 
( ):q2 < 0

Dispersion relation for the logarithm 
( ):q2 < 0

Dispersion relations are based only on unitarity and analyticity  model independent 
approach

⇒

G(q2) =
1
π ∫

∞

q2
th

Im(G(s))
s − q2

ds ln (G(q2)) =
q2

th − q2

π ∫
∞

q2
th

ln G(s)

(s − q2) s − q2
th

ds

Experimental Inputs

• Time-like data for form factor’s moduli from 
 

• Time-like data for the relative phase from 

e+e− ↔ ℬℬ̄

e+e− ↔ ℬ↑ℬ̄

Theoretical Inputs

• Analyticity 

• Threshold values 

• Asymptotic behaviour



Data for modulus and phase of GΛ
E /GΛ

M

• Sine of the relative phase accessible 
through polarization 

• No hints on the determination of the 
relative phase 

𝒫y = −
2MΛ q2 sin(2θ) GΛ

E /GΛ
M sin (arg(GΛ

E /GΛ
M))

q2 (1 + cos2(θ)) + 4M2
Λ GΛ

E /GΛ
M sin2(θ)

𝒫y = −
2MΛ q2 sin(2θ) GΛ

E /GΛ
M sin (arg(GΛ

E /GΛ
M))

q2 (1 + cos2(θ)) + 4M2
Λ GΛ

E /GΛ
M sin2(θ)

More data coming soon!



Dispersion relations
• Consider the complex function  with  poles 

and  zeroes  and a branch cut 
 

• Taking the integral over the contour  gives the 
Cauchy’s argument principle

 

• By taking each contribution into account

R(z) N
{pj}N

j=1 M {zk}M
k=1

(x0, ∞)
Γr

lim
r→∞

1
2iπ ∮Γr

d ln (R(z))
dz

dz = M − N

lim
r→∞

1
2iπ ∮Γr

d ln (R(z))
dz

dz =
1
π (arg(R(∞)) − arg(R(x0)))

(arg(R(∞)) − arg(R(x0))) = π (M − N)

Levinson’s Theorem



Dispersive procedure
We define the ratio R(q2) =

GΛ
E (q2)

GΛ
M(q2)

⇒ {
GΛ

E (0) = 0
GΛ

E (q2
phy) = GΛ

M(q2
phy)

⇒ {
R(0) = 0
R(q2

phy) = 1

The asymptotic behaviour

lim
q2→±∞

R(q2) =
GΛ

E (q2)
GΛ

M(q2)
= 𝒪(1)

Subtracted dispersion relations for real and imaginary part

R(q2) = R(0) +
q2

π ∫
∞

q2
th

Im(R(s))
s(s − q2)

ds, ∀q2 ∉ [q2
th, ∞)

Re (R(q2)) =
q2

π
Pr∫

∞

q2
th

Im(R(s))
s(s − q2)

ds, ∀q2 ∈ [q2
th, ∞)

The subtracted dispersion relations ensure the normalization at q2 = 0



Parametrization for the form factors ratio
Parametrization through the set of Chebyshev polynomials {Tj(x)}

N

j=0

Im(R(q2)) ≡ Y (q2; ⃗C , q2
asy) =

∑N
j=0 CjTj(x(q2)), q2

th < q2 < q2
asy

0, q2 ≥ q2
asy

x(q2) = 2
q2 − q2

th

q2
asy − q2

th
− 1

q2 ∈ [q2
th, q2

asy] ⇒ x(q2) ∈ [−1,1]

Theoretical constraints on Y(q2; ⃗C , q2
asy) Theoretical constraints on Re(R(q2))

R(q2
th) is real ⇒ Y(q2

th; ⃗C , q2
asy) = 0

R(q2
phy) is real ⇒ Y(q2

phy; ⃗C , q2
asy) = 0

R(q2 ≥ q2
asy) is real ⇒ Y(q2 ≥ q2

asy; ⃗C , q2
asy) = 0

Re (R(q2
th)) =

q2
th

π
Pr∫

q2
asy

q2
th

Y(s; ⃗C , q2
asy)

s(s − q2
th)

ds = 1

Re (R(q2
asy)) =

q2
asy

π
Pr∫

q2
asy

q2
th

Y(s; ⃗C , q2
asy)

s(s − q2
asy)

ds = 1

Experimental constraints for the time-like region (q2 > q2
phy)

3 experimental points for the modulus and 2 for the phase from Babar (2007), 
BESIII (2019).

8 experimental points for the modulus and 7 for the phase from Babar 8 experimental points for the modulus and 7 for the phase from Babar 



The  definitionχ2

χ2 ( ⃗C , q2
asy) = χ2

R
+ χ2

ϕ + τphy χ2
phys + τasy χ2

asy + τcurv χ2
curv

χ2
R

=
8

∑
j=1

X2(q2
j ) + Y2(q2

j ) − Rj

δ Rj

2

X(q2) ≡ Re(R(q2))

χ2
ϕ =

7

∑
k=1 (

sin (arctan(Y(q2
k )/X(q2

k )) − sin(ϕk)
δ sin(ϕk) )

2

Constraint at  q2 = q2
phy χ2

phy = (1 − X(q2
phy))

2

Constraint at  q2 = q2
asy χ2

asy = (1 − X2(q2
asy))

2

Oscillation damping χ2
curv = ∫

q2
asy

q2
th

( d2Y(s)
ds2 )

2

ds

The values of  and  are 
chosen so that the theoretical 
conditions are exactly fulfilled.

τphys τasy

The minimization procedure 
implies the solution of an ill-
posed problem which has to be 
regularized.



The parametrization
The theoretical constraints  
remove three degrees of freedom, allowing to determine three coefficients, i.e. .

Y(q2
th; ⃗C , q2

asy) = Y(q2
phy; ⃗C , q2

asy) = Y(q2
asy; ⃗C , q2

asy) = 0
C0, C1, C2

The asymptotic threshold  is used as a free parameter.q2
asy

If we consider  Chebyshev polynomials, we are left with  free coefficients.(N + 1) (N − 2)

We used , so we have four free parameters  and .N = 5 C3, C4, C5 q2
asy

• The real part of the ratio is forced to the unity at  

• No constraint for the real part at  

• Dumping relevant only for high degree polynomials

τphy = 104 ⇒ q2 = q2
phy

τasy = 0 ⇒ q2 = q2
asy

τcurv = 0.05 ⇒



The curvature weight
The curvature weight  regularises the fit function behaviour.τcurv

If  is too large physical information are canceled.τcurv

If  is too small the solution has too much noise.τcurv

A. Mangoni, S. Pacetti, and E. Tomasi-Gustafsson, First exploration of the physical Riiemann surfaces of the 

ratio  , Physical Review D 104, 116016 (2021)GΛ
E /GΛ

M

The polynomial degree  and the curvature weight 
 are mutually dependant.

N
τcurv

The value of  at a given polynomial degree is 
given by a “phase transition” of the asymptotic 
threshold

τcurv



Results & discussion
At the thresholds  and  the values of the ratio are real, so the relative phases 
are integer multiples of of  radians.

q2
th q2

asy
π

Nth,asy =
1
π

arg (
GΛ

E (q2
th,asy)

GΛ
M(q2

th,asy) ) ∈ ℤ

The  minimization alongside with the theoretical constraints allows to produce the 
 possible pairs compatible with the data points.

χ2

(Nth, Nasy)

A Monte Carlo procedure allows to obtain the probability of occurrence of each pair 
.(Nth, Nasy)

-1 2 50.5%
-1 1 16.0%
0 3 26.8%
-1 0 4%

Nth Nasy %



Moduli and relative phases



Charge radius of a neutral baryon
The charge radius squared  of an 
extended particle is proportional to the 
first derivative of the electric form factor 

 at .

⟨rE⟩2

GE (q2) q2 = 0

In the Breit frame, , the 
electric form factor is the Fourier 
transform of the spacial charge 
distribution.

q = (0, ⃗q)
⟨rE⟩2 = 6

dGE(q2)
dq2

q2=0

For a neutral baryon the Sachs form factors are normalized as , , then taking 
the derivative of the ratio 

GE(0) = 0 GM(0) = μ ≠ 0
R(q2) = GE(q2)/GM(q2)

dR(q2)
dq2

q2=0

=
1

GM(q2) (
dGE (q2)

dq2
−

=0 at q2=0

GE(q2)
GM(q2)

dGM(q2)
dq2 )

q2=0

=
1

GM(q2)
dGE(q2)

dq2
q2=0

=
1
μ

⟨rE⟩2

6

In terms of the dispersion relations for the imaginary part, the first derivative of the ratio 
 at  is computed asR(q2) q2 = 0

⟨rE⟩2 = 6μ
dR(q2)

dq2
q2=0

=
6μ
π ∫

∞

q2
th

Im (R(s))
s2

ds =
6μ

πΔq2

N

∑
j=0

Cj ∫
1

−1

Tj(x)dx
(x + 1 + q2

th /Δq2)2
, Δq2 =

q2
asy − q2

th

2



Charge radius of a neutral baryon
r̄ℬ

E ≡ Sign (⟨rℬ
E ⟩2) ⟨rℬ

E ⟩2 The  baryon charge radius is comparable 
with the neutron one .

Λ
r̄n

E

The  values suggest that the negative charge of the  baryon’s  quark lies closer to the 
center than the  quark of the neutron.

r̄Λ
E Λ s

d



Final considerations
The bands represent the one-sigma-error computed with statistical analysis of the Monte Carlo 
procedure.

The dispersive procedure, connecting time-like experimental values and theoretical constraints, 
allows to assign different determinations to the phase, and hence to the measured values of the 
phase. This gives information about the space-like behaviour of the form factors ratio.

Assuming no zeroes for the magnetic form factor, the Levinson’s Theorem allows to count the 
number of zeroes of the electric form factor, aside from the theoretical one at q2 = 0

Δϕ = ϕ(∞) − ϕ(q2
th) = π (Nasy − Nth) ≥ π

The most probable value for  is 3, hence there are at least two additional zeroes for 
.

Nasy − Nth
GΛ

E (q2)

To do list: 

• Update the plots with the new data from BESIII collaboration. 

• Unravel the systematic uncertainty given by the degree of the polynomial used for the fit.
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