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Motivation and context

QCD phase diagram
Large density:
Effective models

Mean-field approximation
pros:

• Clear and simple
• It works well! (mostly)

cons:
• It can miss something important
• It can generate nonphysical effects

How to go beyond?
• Functional methods
• Add further correction, e.g. in a gaussian approximation

What will be shown is one way to go beyond mean-field
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Effective model

Start with a simple Yukawa model (1 meson + 1 fermion):

LY =
1
2
∂µϕ∂

µϕ− Vcl(ϕ) + ψ̄(i/∂ − gϕ)ψ, Vcl(ϕ) =
1
2
m2ϕ2 +

λ

4!
ϕ4

To get the thermodynamics:
partition function Z⇒ effective potential Ω from Z = e−iV4Ω

Partition function
Z =

∫
Dψ̄DψDϕei

∫
x LY (x)

Integrate out fermions∫
Dψ̄Dψei

∫
x ψ̄(iS−1)ψ = Det(iS−1) ⇒ Z =

∫
DϕeiS,

(
S = Sm + Sf

)
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Effective model: approximations

What to do with the meson fields? Z =

∫
DϕeiS(ϕ)

ϕ → Φ+ φ Φ: homogeneous background, φ: fluctuating field

Mean-field approximation: Set φ→ 0 ⇒ Z = eiS(Φ)∫
x

To go beyond: Expansion in ϕ

S(Φ + φ) = S(Φ) + φ
δS(ϕ)
δϕ

∣∣∣
ϕ=Φ

+ φ
δS(ϕ)
δϕδϕ

∣∣∣
ϕ=Φ

φ+ . . .

Gaussian integral for mesons

Gaussian approximation ∫
Dφ e

i
2
∫
x φ(iG

−1)φ = Det(iG−1)−
1
2

Ω =
1
2
m2Φ2 +

1
4!
Φ2 + itr

∫
k
log(iS−1)−

i
2

tr
∫
k
log(iG−1)
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Some clarification

Questions might arise naively:

• What is the small parameter?
• How we get closer to the physical case?

= +

Even in the simplest case: Physics contained in the parameters
Keeps the structure of the underlying symmetry

Going beyond: Extra structure can be important
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Linear Sigma Model / Quark Meson Model

Simple models with:

• Mesons as main degrees of freedom
• Chiral symmetry as basic structure
• Constituent quarks in a Yukawa type term

Lagrangian:

L =
1
2

Tr
(
∂µϕ

†∂µϕ
)
−

1
2
m2Tr

(
ϕ†ϕ

)
− λ1

(
Tr(ϕ†ϕ)

)2
− λ2Tr

(
(ϕ†ϕ)2

)
+ Tr(Hϕ) + c1

(
Det(ϕ) + Det(ϕ†)

)
+ ψ̄

(
i/∂ − gM)

)
ψ

with ϕ = S+ i P, containing pion, (kaon,) eta, sigma, etc..., while M = S+ iγ5P

+ Vector and axial-vector mesons (ELSM)
+ Polyakov loop to mimic the confinement
+ Further hadronic fields to describe more dofs
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LSM mean-field

Thermodynamics: Mean-field level effective potential
• Classical potential.
• Fermionic one-loop correction (vacuum part properly renormalized)
• Meson fluctuation are included

ΩMF(T, µq) = Vcl + itr
∫
K
log

(
iS−1

0 (T, µq)
)

Field equations (FE):
∂ΩMF
∂ϕN

=
∂ΩMF
∂ϕS

=
∂ΩMF
∂Φ̄

=
∂ΩMF
∂Φ

= 0

Curvature meson masses:
M2

(MF)ab =
∂2ΩMF
∂φa∂φb

∣∣∣∣
{φi}=0
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LSM Gaussian

Thermodynamics: Gaussian effective potential
• Classical potential.
• Fermionic one-loop correction (vacuum part properly renormalized)
• Meson fluctuations are included (only the pion for now and thermal fluctuations)

ΩG(T, µq) = ΩMF(T, µq)−
i
2

tr
∫
K
log

(
iG−1(T, µq,M2

(MF))
)

Field equations (FE):
∂ΩG
∂ϕN

=
∂ΩG
∂ϕS

=
∂ΩG
∂Φ̄

=
∂ΩG
∂Φ

= 0

Curvature meson masses:
M2

(MF)ab =
∂2ΩMF
∂φa∂φb

∣∣∣∣
{φi}=0
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Results: Phase transition at µq = 0

The transition temperature decreases (good news for ELSM)
The mesonic pressure corrects the T < Tpc behavior
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Results: Phase transition at µq = 0

What can go wrong?
The pion mass! This is non-physical
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Results: Phase diagram and the CEP

A slight shift in the critical endpoint
Note: the meson fluctuations have no µB dependence (µB = 3µq in this case)
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Summary

• Effective models are simple and useful tools to investigate the phase diagram.

• The usual mean-field approximation works surprisingly well.

• We implemented a beyond mean-field, Gaussian approximation.

• The Gaussian approximation slightly modifies the phase diagram
but also qualitatively justifies the mean-field results.

• The problem with the pion mass shows that something might be incomplete.

• How to handle properly the mesonic vacuum fluctuations?

• What are the beyond mean-field effects? E.g. what can be seen for the critical scaling?

• Meson fluctuations in the meson masses?
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Thank you!


	Appendix

