

Microscopic description of β -decay rates of r-process nuclei

Diana Alvear Terrero^{1,2,3}

In collaboration with Gabriel Martínez-Pinedo^{1,2,3} Caroline E. P. Robin^{4,3} Ante Ravlić⁵ Thomas Neff³

¹Helmholtz Forschungsakademie Hessen für FAIR. ²Technische Universität Darmstadt.
³GSI Helmholtzzentrum für Schwerionenforschung. ⁴Fakultät für Physik, Universität Bielefeld.
⁵Facility for Rare Isotope Beams, Michigan State University.

FAIRness 2024, Donji Seget, Croatia

D. Alvear Terrero

The r-process.

- Astrophysical environment should provide enough neutrons per seed
- Path not fully accessible to experiments → theoretical predictions
- Inputs: β-decay half-lives, neutron-capture rates, fission rates and yields, ...

Determine the nuclear timescale for the r-process: competition with expansion timescale.

HFHF

β -decay rates of r-process nuclei.

$$(Z,N) \xrightarrow{\beta^-} (Z+1,N-1) + e^- + \bar{\nu}_e$$

 $\begin{array}{ll} L,J,S:\\ J_i^{\pi_i} \end{array} \qquad \begin{array}{ll} L=0: \text{ allowed } (\text{GT: } \Delta S=1)\\ L>0: \text{ forbidden } (\text{FF: } L=1, \ \pi_i\neq\pi_f) \end{array}$

Allowed decays (GT):

$$\lambda = \frac{\ln 2}{T_{1/2}} \propto \int^{Q_{\beta}} f(Z, Q_{\beta} - E) S(E) dE$$
$$S(E) = \sum_{f} |\langle f | \hat{F} | i \rangle|^{2} \delta(E - E_{f} + E_{i})$$

Correlations relevant to the low-lying strength.

Global β -decay calculations within QRPA.

- FRDM + gross theory for FF¹
- relativistic spherical approach with D3C*²

shorter half-lives for $N > 126 \Rightarrow$ shift of the third abundance peak (A ~ 195)

non-relativistic deformed approach with SKO' (Ney 2020)³

¹P. Möller et al., Phys. Rev. C 67, 055802 (2003), P. Möller et al., Atomic Data and Nuclear Data Tables 125, 1–192 (2019).
 ²T. Marketin et al., Phys. Rev. C 93, 025805 (2016), M. Eichler et al., The Astrophysical Journal 808, 30 (2015).
 ³E. M. Nev et al., Phys. Rev. C 102, 034326 (2020).

FAIRness 2024, Donji Seget, Croatia

4

Global β -decay calculations within QRPA.

Very different predictions of the FF contribution to the rates

⁴ P. Möller et al., Phys. Rev. C **67**, 055802 (2003), P. Möller et al., Atomic Data and Nuclear Data Tables **125**, 1–192 (2019).
 ⁵T. Marketin et al., Phys. Rev. C **93**, 025805 (2016).

⁶E. M. Ney et al., Phys. Rev. C **102**, 034326 (2020).

Global β -decay calculations within QRPA.

FF contribution to the rates

 \rightarrow After some recent corrections to the code for the RMF approach with **D3C*** functional⁷

⁷C. E. P. Robin and G. Martínez-Pinedo, arXiv:2403.17115 (2024).

Global β -decay calculations within QRPA.

Sensitivity to isoscalar pairing strength (V_0) and comparison with experiment⁸

• For constant V₀, the effect along one chain depends on the single particle states being filled.

Within QRPA scheme, the inclusion of V_0 is needed.

⁸G. Lorusso et al., Phys. Rev. Lett. **114**, 192501 (2015).

Global β -decay calculations within QRPA.

 Large V₀ values can produce problems in the QRPA when moving to the heavy and superheavy region → need better prescription for V₀ → missing correlations.

Extensions: proton-neutron pairing⁹

No adjustable proton-neutron pairing.

So far limited to spherical systems.

⁹C. Robin and E. Litvinova, Phys. Rev. C 98, 051301 (2018), C. Robin and E. Litvinova, European Physical Journal A 52, 205 (2016).

Extensions: proton-neutron pairing.¹⁰

FAIRness 2024, Donii Seget, Croatia

10

D. ALVEAR TERRERO

Extensions: proton-neutron pairing and deformation.

Procedure:^{11,12}

- Extract phonon vertices from like-particle FAM-ORPA¹³ for all multipole excitations
- Add the vertices to the deformed β-decay calculation¹⁴ (in collaboration with A. Ravlić)

In progress

¹¹E. Litvinova and Y. Zhang, Phys. Rev. C **104**, 044303 (2021), Y. Zhang et al., Phys. Rev. C **105**, 044326 (2022).

¹²Q. Liu et al., Phys. Rev. C **109**, 044308 (2024).

¹³A. Bielčić and T. Nikšić. Computer Physics Communications **287**, 108689 (2023).

¹⁴A. Ravli ć et al., Phys. Rev. C **110**, 024323 (2024),

Summary and outlook.

- Towards improvement of global β-decay rates calculations within relativistic description taking into account the particle-vibration coupling and deformation of the nuclei.
- At QRPA level:
 - Corrections and update of previous relativistic QRPA β-decay rates calculation (in progress).
 - Need a prescription for the isoscalar pairing strength that does not introduce artefacts.
- Beyond QRPA:
 - Inclusion of the phonons reduces the half-lives, bringing them closer to the experiment without the need for adjustable proton-neutron pairing.
 - Calculation of the deformed like-particle phonon matrices and implementation in the deformed β-decay code (in progress)

Thank you for your attention!