A SiPM-based readout system for the CBM's RICH

FAIR next generation scientists - 8th edition workshop J. Peña-Rodríguez *penarodriguez@uni-wuppertal.de*

Bergische Universität Wuppertal Fakultät für Mathematik und Naturwissenschaften

BERGISCHE

UNIVERSITÄT WUPPERTAL

2024

NRW-FAIR Netzwerk

CBM at FAIR (Facility for Antiproton and Ion Research)

The CBM's RICH

RICH

Camera

Backpanel

Multi-Anode Photomultiplier

6 MaPMTs per backpanel 2 DIRICHs per MaPMT Combiner and power module

MAPMT H12700 6 mm x 6 mm Pixels

J. Peña-Rodríguez. CBM's RICH using SiPMs (BUW)

Cherenkov Ring detection

SiPM fundamentals

Time (s)

Comparing MaPMTs and SiPMs

SiPM selection

(MICROFJ-60035	S14160-6050CS	AFBR-S4N66P024
Vendor	OnSemi	Hamamatsu	Broadcom
A. area (mm ²)	6 × 6	6 × 6	6×6
Pixel pitch (μ m)	35	50	40
V. operating (V)	30	40	45
PDE (%)	50	50	63
Wav. peak (nm)	420	450	420
Gain ($\times 10^6$)	6.3	2.5	7.3
DCR (kHz/mm ²)	150	100	125
Crosstalk (%)	25	7	23
Afterpulsing (%)	5	-	1
Price/Pixel (€)	41	86.2	37
l			

Design requirements

MaPMT channel

Signal shortening

Signal amplification

BFU760F RF transistor Low noise High linearity Transition frequency 45 GHz 1.1V/12mA per channel

J. Peña-Rodríguez. CBM's RICH using SiPMs (BUW)

Raw signal

Amplified signal

Signal conditioning chain

J. Peña-Rodríguez. CBM's RICH using SiPMs (BUW)

SiPM characterization (Jan's bachelor thesis)

Jan Lietz bachelor thesis Bergische Universität Wuppertal

Toy prototype: 2x2 SiPM array

Toy prototype: Measuring setup

J. Peña-Rodríguez. CBM's RICH using SiPMs (BUW)

Toy prototype: Analysis

J. Peña-Rodríguez. CBM's RICH using SiPMs (BUW)

Toy prototype: Noise vs. threshold

J. Peña-Rodríguez. CBM's RICH using SiPMs (BUW)

Gain analysis

4 SiPMs set at $45 V/25^{\circ}C$

A baseline shifting is observed (sol. DiRICH baseline calibration), however the channel gain seems to be similar.

Thanks to GSI (M. Traxler's team) for PCB soldering!

J. Peña-Rodríguez. CBM's RICH using SiPMs (BUW)

Amplification board

- 64 amplification channels
- 5.5 x 5.5 cm² PCB
- 2 high-density SAMTEC connectors (QSE-040-01-F-D-A)
- \sim 700 components
- $0.77 \text{ A}/1.1 \text{ V} \sim 0.84 \text{ W}$
- 5 W per panel (6 SiPM arrays)

Triggering system concept

Summary: Hardware

- Complete characterization of SiPM's performance depending on temperature and over-voltage
- Design of the SiPM signal conditioning (shortening & amplification) warranting linearity, photo-electron resolution, low power consumption, and scalability.
- 2×2 SiPM array designed and tested (threshold scanning, photo-electron resolution, no inter-channel crosstalk)
- Design of an 8 \times 8 SiPM array. PCB under assembly and soldering!
- Design of the amplification board for 64 SiPM channels

Outlook

- 8×8 SiPM array characterization (temperature, bias voltage, radiation damage)
- Ring signal detection under synchronized conditions
- FPGA triggering modification for free-streaming detection

Thanks!

Backup