Performance Evaluation of Plastic Scintillator-Based Calorimeter Modules for Neutron Detection in the mCBM Experiment

Dachi Okropiridze

Introduction — Neutron Detection at mCBM

Ph.D. Project - Neutron Detection at mCBM, SIS18 CBM, GSI FAIR

- Neutrons don't possess charge, therefore don't interact with EM force. Neutrons are less likely to interact with the matter
- Previous reaction channel at 2.7GeV/c momentum resulted 40% efficiency on neutron detection using same systems [1]

Objectives

• Detector Design and Development: For mCBM experiment two identical detectors need to be designed, each consisting of 7 identical neutron detection modules, one placed behind FSD close to the beam for high multiplicities and the other behind TOF further away for track reconstruction

PP simulations in Geant4

У JÜLICH 🚟 RUB 🖪 🖬 👖

- Installation and Integration: Devices need to be mounted inside the mCBM cave, one behind FSD. DAQ systems need to be selected and integrated with the mCBM environment
 - System Calibration and Testing
 - Data Acquisition during Beamtime(s) 2024 on...
 - Data Analysis and Interpretation

Hardware at mCBM

- $\bullet NCAL {\tt Neutron \ Calorimeter \ Detector}$
- VETOs plates
- $\bullet \ FSD-Forward\ Spectator\ detector$

8

Hardware – Module

- Plastic scintillator BC-416 hexagonal shape with a side length of about 8cm and a length of 45 cm resulting in an area of about 1200 cm2
- Photomultiplier Photonics XP4592/PA outer diameter of about 130 mm

• Assembly:

- ¹ Scintillator wrapped in several layers of light-insulating tape
- ^[] Silicon based gel used in between the PMT and scintillator contact
- $\hfill \ensuremath{\mathbbm {I}}$ Scintillator and PMT fixed together using plastic ring and outer metal frame

JÜLICH RUB 5 5

• Objective is to measure energy of a particle and to choose the most suitable device for the task

DAQ - Readout System Selection

• Two independent readout tests have been set up in Wuppertal and at GSI using Neutron Detector modules

JULICH NOR RUB IS ST

Oscilloscope Data for High Voltage Value: 1500, (1031 Data Points)

🕗 JÜLICH 🗰 RUB 🖬 🖬 🏦

14

Oscilloscope Data for High Voltage Value: 1500, (10000 Data Points)

DiRich tests - setup

🕗 JÜLICH 🗰 RUB 🖬 🖬 🏦

DiRich tests – Analysis tree

3.4 Plotting Integral vs DiRich TOT correlated distribution and fitting with Function

JÜLICH KW RUB ES S

3.4 Plotting Integral vs DiRich TOT correlated distribution and fitting with Function

JÜLICH KW RUB ES S

3.4 Plotting Integral vs DiRich TOT correlated distribution and fitting with Function

🕗 JÜLICH 🗰 RUB 🖪 🖬 🏦

3.4 Plotting Integral vs DiRich TOT correlated distribution and fitting with Function

JÜLICH KW RUB ES S

3.5 Generating calibration model and plotting model vs real integral data

JÜLICH KW RUB ES S

3.5 Generating calibration model and plotting model vs real integral data

JÜLICH KW RUB ES S

23

TOF PADI tests – Analysis tree

TOF PADI tests - setup

🕗 JÜLICH 🗰 RUB 🖬 🖬 🏦

TOF tests – Plots

3.3 Plotting integral vs TOT correlated distribution

Neutron detection at mCBM – Dachi Okropiridze

Neutron detection at mCBM – Dachi Okropiridze

Geant4 Simulations

Geant4 – Neutron hits

Energy Deposition in CAL1 by Primary Neutrons Initial Energy: 1000.00 MeV

🕗 JÜLICH 🗰 RUB 🖬 🖬 🛍

Geant4-Multiplicity

Geant4-Multiplicity

Central Module Energy Depositions

All Module Energy Depositions -1 GeV

Total Energy Depositions

🕗 JÜLICH 🐭 RUB 🖬 🖬 🖬

Modules Firing per Event

JÜLICH MANNER RUB ES S

Modules Firing per Event

Neutron detection efficiency over energy

Geant4 – Particles produced

🕗 JÜLICH 🗰 RUB 🖬 🖬 🛍

Summary

- 16 Modules have been removed from the 20+ ton detector TOF at COSY
- Two systems each consisting of 7 modules have been assembled mounted on the movable and height adjustable crates
- Both detectors have been transported to GSI and with upgraded VETO modules now are located in/near mCBM cave
- Data acquisition system selection in progress...
 - $\hfill\square$ Two candidates: DiRich & TOF PADI
 - Single modules set up for readout tests in Wuppertal for DiRich and at GSI for PADI
- Geant4 Simulations ...
- Beamtime data-taking and analysis

🕗 JÜLICH

RUB

GSI

Outlook

Completing selection process of readout systems and making a decision

pp Geant4 simulations

Calibration at CANAM, CZR cyclotron facility

Detector commissioning

Data taking on upcoming beamtimes

Analysis, conclusions

Questions, Suggestions, Comments Thank you for your attention!

Neutron detection at mCBM – Dachi Okropiridze

Neutron detection at mCBM – Dachi Okropiridze

- 1. E. Roderburg, IKP annual report 2011.
- 2. D. Grzonka, et al., Preparation of test modules for neutron detection at mCBM, 2023
- 3. J. Kreß, PhD thesis, University Tübingen, 2003.

