# Hypernuclei reconstruction with CBM

#### Susanne Gläßel, IKF Frankfurt

He5L

Sept 26th 2024, FAIRNess, Croatia



Bundesministerium für Bildung und Forschung D

π

#### Agenda

#### Hypernuclei 3-body-decay

with  ${}^{3}_{\wedge}$ H 3-body decay as test bed for the  ${}^{6}_{\wedge\wedge}$ He decay.

$$^{6}_{\Lambda\Lambda}He \rightarrow ^{5}_{\Lambda}He + p + \pi^{-} \rightarrow ^{5}_{\Lambda}He \rightarrow ^{4}He + p + \pi^{-}$$

1)  $^{3}_{\wedge}H$  reconstruction: Systematic error estimation for

- y-spectra

- lifetime measurement

2)  $^{5}_{\Lambda}$ He reconstruction: Improvement with Trd-dE/dx



## Hypernuclei physics

- Properties of hypernuclei: lifetime, binding energy
   "Hypertrition liftetime puzzle"
- \* Hyperon-Nucleon(YN)- /Hyperon-Hyperon(YY) interactions "hyperon puzzle"
- \* Equation of state of hadronic matter at high density and low temperature
  - $\rightarrow$  inner structure of neutron stars
- \* Production mechanism of hypernuclei
  - Thermal model: multiplicities  $\leftrightarrow$  masses, T,  $\mu_B$  at chemical freezeout
  - Colescence model: multiplicities ↔ phase-space-distribution of baryons
  - at kinetic freezeout (coalescence radius)
  - Dynamical model: PHQMD





Hyperon puzzle

Mass-radius relation for neutron stars: Depends on EOS of dense nuclear matter Constraints form observation of MNS  $\approx 2 \text{ MO}$ 

Hyperons should appear when density increases

- $\Rightarrow$  EOS softens with hyperon matter
- $\Rightarrow$  2 M $_{\odot}$  cannot be reached

YN and YY interaction

- Repulsive YN and YY interactions  $\Rightarrow$  stiffer EOS
- 3-body forces between Ys to be studied

 $\Rightarrow$  Important input from hypernuclei measurements



### Hypernuclei physics with CBM

#### CBM

Maximum in the production of hypernuclei

- ★ Relatively low beam energies at FAIR & high interaction rates
- ★ CBM detector design: clean identification
- → precise measurement of hypernuclei lifetime, branching ratios of decays, binding energy  $B_{\Lambda}$ , spectra and flow
- → sufficient statistics for double hypernuclei, e.g.  $^{6}$ He expected rates: ~10<sup>-6</sup>/evt. ~10<sup>-11</sup>/evt. in CBM range
- $\rightarrow$  Search for the new hyper-nucleus or charmed nucleus  $^{4}_{D}He$



#### Parton-Hadron-Quantum-Molecular Dynamics

= n-body microscopic transport approach for the description of heavy-ion dynamics with dynamical cluster formation

| PHSD 🐠                                                        | + QMD                                                                                  | + MST                                                     |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Relativistic considerations                                   | Correlations between baryons                                                           | Cluster recognition                                       |
| but: mean-field potentials<br>=> correlations are smeared out | n-body transport approach<br>=> formation of clusters due to potential<br>interactions | search for accumulations of particles in coordinate space |



J. Aichelin et al., PRC 101 (2020) 044905 PHSD: W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168(2009)

#### Hypertriton

Loosely bound object

Λ binding energy: B<sub>Λ</sub> ≈ 400 keV (compare B<sub>d</sub> = 2.2 MeV)

Wavefunction is larger than Pb-nucleus

Hypertriton lifetime "puzzle"

- Lifetime smaller than the one of free  $\Lambda?$ 

- Life-time particularly sensitive to *YN* interaction.

Decay modes:  ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}, {}^{3}_{\Lambda}H \rightarrow {}^{3}H + \pi^{0}$  ${}^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}, {}^{3}_{\Lambda}H \rightarrow d + n + \pi^{0}$ 





https://hypernuclei.kph.uni-mainz.de

Reconstruction of 3-body-decay
1) reconstruct mother from π<sup>-</sup> & p
2) Add d at SV of π<sup>-</sup> & p



## Systematic error estimation for different simuluation & reconstruction steps

1) different simulation input with different y- & pT-distributions 🗡

- 2) different cut sets for reconstruction
- 3) different invariant mass-cuts (2, 3 & 4  $\sigma$ )  $\bigtriangledown$
- 4) different input for efficiency correction

5) different fits for p<sub>T</sub>-spectra to extrapolate to unmeasured regions

2) Cut variation (e.g.)



3) Mass spectrum for p<sub>T</sub>-y-bin





#### Simulated datasets: different y- & $p_T$ -distributions

PHQMD (0.0427 <sup>3</sup> H/event)



Shape of  $^{3}_{\Lambda}$ H rapidity distribution is not 100% known yet.



thermal signal (0.087  $^{3}$ <sub>A</sub>H/event) + UrQMD + d, t,  $^{3}$ He

p<sub>T</sub>- & y-distribution\*\*: Experimental nuclei-shape from E864-data\*\*\*



=> Different distributions relevant for detector efficiencies.

=> Used for systematic error estimation of lifetime measurement.

\*T. A. Armstrong et al., Phys. Rev. C 61 (2002) 064908 , \*\*I. G. Bearden et al., Phys. Rev. Lett. 93 (2004) 102301, \*\*\*L. Adamczyk et al., Phys. Rev. C 97 (2018) 054909

#### Extrapolation of $p_T$ -spectra to unmeasured regions

Fit  $p_T$ -spectra with:

1) Blast-Wave model fits\*

$$\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho}{T}\right) \times K_1 \left(\frac{m_T \cosh \rho}{T}\right)$$

Parameters:

<β>: transverse expansion velocity (linear velocity profile) T: kinetic freeze-out temperature

2) Boltzmann fits

$$\frac{dN}{dp_T} \sim m_T \cdot e^{\left(-\frac{m_T}{T}\right)}$$

#### p<sub>T</sub>-spectra for y-bin



#### Systematic error for <sup>3</sup><sub>^</sub>H y-spectra



Systematic error most bins ~ 10% maximum = 12.6 %.

Main contribution to systematic error comes from fit variations.

### Lifetime measurement of $^{3}_{\Lambda}$ H with CBM



## Reconstruction of ${}^{5}_{\Lambda}$ He

- important also for the reconstruction the of  $^{6}_{\scriptscriptstyle \Lambda\Lambda}$ He decay

 ${}_{\Lambda\Lambda}{}^6He \rightarrow {}_{\Lambda}{}^5He + p + \pi^-$ 

- low multiplicities 0.003  $^{5}_{\Lambda}\text{He}$  / event

using PHQMD events is not possible (very high statistics needed)

 $\rightarrow$  embed thermal signal into UrQMD event + d + t + <sup>3</sup>He

& mix signal-events with bg-events

- separation of d & <sup>4</sup>He is very important to separate

$$\begin{smallmatrix} {}^5_\Lambda He \to {}^4He + p + \pi^- \\ \& \\ {}^3_\Lambda H \to d + p + \pi^- \end{split}$$

 $\rightarrow$  use of Trd-dE/dx (PidTrd-software)





13

### PID with TRD-dE/dx

TRD: Specific energy loss for every particle specie depending on momentum (Bethe-Bloch)

Calculation of <dE/dx> over 4 TRD-detector layers:

**Truncation**: reduce Landau-fluctuations = select 2 hits with smallest dE/dx

1) Separation of d & <sup>4</sup>He

- can not be separated with TOF alone (similar m/q)
- important for reconstruction of  $^{6}$ He decay chain => very rare signal

2) Pid for hadrons: Increase efficiency or s/b



#### Separation of d & <sup>4</sup>He with TRD-dE/dx



⇒ Background can be supressed with TRD (different settings for TRD cut possible).

! Results are for 1 <sup>5</sup>He / event. ! For scaling with bg-events more statistic is needed. Scaling factor: <sup>5</sup>He / event \* br =  $0.03 \times 0.323 = 10^{-4}$  $\Rightarrow$  Strong background supression is needed.

#### 16

## Summary & Conclusion

- Systematic error of  ${}^{3}_{\Lambda}H$  y-spectra could be estimated to ~10% for PHQMD dataset.
- Systematic error of  $^{3}_{\Lambda}$ H lifetime measurement could be estimated to 6.7 %, lifetime is slightly underestimated.
- Reconstruction of  ${}^{5}_{\Lambda}$ He can be improved with Trd-dE/dx.

Next steps:

- Improve procedure to estimate systematic uncertainties by using different datasets for efficiency estimation.
- Improve estimation of lifetime value (e.g. remove particles with long lifetimes that might not reach detector).
- Realistic  $^{5}_{\Lambda}$ He reconstruction with scaled background high statistics needed.

#### THANK YOU.



#### BACKUP

## Minimum Spanning Tree (MST)

Cluster criterion: distance of nuclei

Algorithm: search for accumulations of particles in coordinate space

1. Two particles i & j are bound if:

 $|r_i - r_j| < 4.0 \text{ fm}$ 

2. Particle is bound to cluster if bound with at least one particle of cluster



Remark: additional momentum cuts lead to a small changes: particles with large relative momentum are mostly not at the same position (V. Kireyeu, Phys.Rev.C 103 (2021) 5)

#### Reconstruction of rapidity spectrum

- 1. Mass spectra in y-p<sub>T</sub>-bins: Calculation of  $dN/dp_T$ 
  - $N_{rec}$ : Integration for  $|m m_0| < 3\sigma$
  - Subtraction of background with linear fit
  - Corrected for efficiency x acceptance in  $y-p_T$ -bin

 $\frac{dN}{dp_{T}} = \frac{N_{rec} - bg}{eff \cdot acc \cdot dp_{T} \cdot nevents}$ 

- 2. p<sub>T</sub>-spectra in y-bins: Calculation of dN/dy
  - Sum over  $dN/p_T$  for reconstructed points
  - Extrapolation to unmeasured regions with Blast-Wave model fits\*

$$\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho}{T}\right) \times K_1 \left(\frac{m_T \cosh \rho}{T}\right)$$

Parameters:

 $<\!\!\beta\!\!>:$  transverse expansion velocity (linear velocity profile)

T: kinetic freeze-out temperature



\*E. Schnedermann, J. Sollfrank, and U. Heinz, Phys. Rev. C 48, 2462 (1993).

#### Lifetime measurement of <sup>3</sup><sub>A</sub>H with CBM



#### Cut selection for systematic error estimation



distance to SV < 0.1

 $\chi^2$  topo (p $\pi^-$ ) < 20.0

----• SV

21

DS

SV(pπ)

π

|                                | "optimized" | variation 2 | "optimized" w/ tr w/o tof id | variation 2 w/ tr w/o tof id | distance in PCA < 1.0 distance $\pi$ |
|--------------------------------|-------------|-------------|------------------------------|------------------------------|--------------------------------------|
| $\chi^2$ to PV p/ $\pi$ /d     | 40/90/10    | 40/90/10    | 40/90/10                     | 40/90/10                     | PV SV DS p                           |
| distance p & π                 | 1.0         | 1.0         | 1.0                          | 1.0                          |                                      |
| distance d to SV               | 0.1         | 0.1         | 0.1                          | 0.1                          | x² geo (pπ²) < 3.0                   |
| $\chi^2$ geo p- $\pi$ -mother  | 3.0         | 3.0         | 3.0                          | 3.0                          |                                      |
| $\chi^2$ topo p- $\pi$ -mother | 20.0        | 5.0         | 20.0                         | 5.0                          |                                      |
| decaylength L/dL               | 18.0        | 18.0        | 18.0                         | 18.0                         | decay length L/dL < 18 cm            |
| efficiency                     | 0.055       | 0.055       | 0.107                        | 0.106                        | PV_L_SV_d                            |
| s/b ratio                      | 5.570       | 4.769       | 0.727                        | 0.776                        | p p                                  |

#### Total systematic error for <sup>3</sup><sub>^</sub>H y-spectra



## Lifetime measurement systematic error: different contributions

Exampes:

