

Bundesministerium für Bildung und Forschung

1

The CBM experiment at FAIR

Susanne Gläßel, IKF Frankfurt

Sept 26th 2024, FAIRNess, Croatia

CBM: QCD phase diagram at high μ_B

Experimental investigation of the region with approx. 500 MeV $< \mu_B < 850$ MeV

Characterization of high μ_B matter

Phase transition: deconfinement + chiral symmetry restoration

- 1st order phase transition (PT)
- QCD Critical end point (CEP)
- new phases of QCD (e.g. quarkyonic matter)

Critical point predictions from theory

T ~ 90-120 MeV, $\mu_{\rm B}$ ~500-650 MeV

If true, reachable in heavy-ion collisions at $3 < \sqrt{s} < 5$ GeV.

CBM: QCD phase diagram at high μ_B

Experimental investigation of region with approx. 500 MeV $< \mu_B < 850$ MeV

Key observables – systematic measurements:

Dileptons \rightarrow Emissivity of dense baryonic matter: lifetime, temperature, density, in-medium properties **Fluctuations** \rightarrow System transition via 1st order PT line, CEP Hadrons/Strangeness/Charm \rightarrow System in equilibrium, Equation of Stage (EoS), Flow, Vorticity, Hypernuclei **Correlations**

 \rightarrow Flow, Vorticity, YN & YNN interactions

Almost unexplored (so far not accessible) in the high μ_B region

High $\mu_{\rm B}$ facilities

T. Galatyuk, NPA 982 (2019), update 2023 https://github.com/tgalatyuk/interaction_rate_facilities, CBM, EPJA 53 3 (2017) 60

Worldwide effort to investigate high- μ_B region of the QCD phase diagram

Key observables are rare:

Program needs precise data (statistics!) and sensitivity for rarest signals!

Systematic investigation in dependence on energy, system size/centrality

CBM: very high rate capability, energy range $3 < \sqrt{s_{NN}} < 5$ GeV

CBM detector for high interaction rates

CBM @ FAIR 2.5° - 25° polar angle coverage, tracking in large gap dipole magnet, particle ID downstream

Fixed target experiment

 \rightarrow obtain highest luminosities

Versatile detector systems

 \rightarrow optimal setup for given observable

Tracking based entirely on silicon

 \rightarrow fast and precise track reconstruction

Free-streaming FEE

- \rightarrow nearly dead-time free data taking
- On-line event selection
- \rightarrow highly selective data reduction

315 full members from 10 countries 47 full member institutions 10 associated member institutions

RICH: Jesus Pena Rodriguez Talks by : NCAL: Dachi Okropiridze TRD: Nikolai Podgornov ⁵

STS: Dario Ramirez FSD: Radim Dvorak Lady Maryann Collazo Sánchez

Strangeness

Strange hyperons:

- subthreshold production
- multi-strange hyperons: produced in sequencial collisions w/ K & Λ

$$
\pi^{-,+}N(n,p) \rightarrow \Sigma^{-,+} \rightarrow \Lambda\Sigma^{-,+} \rightarrow \Xi^{-,0}
$$

 \Rightarrow sensitive to the density in the fireball: shed light on the compressibility of nuclear matter

=> flow measurements from hyperons to get insights into the EoS at high baryon densities

 \Rightarrow comparison of Ω / \equiv with chemical equilibrium multiplicities: potential sign for QGP

 \rightarrow S-/S+ ratio is expected to carry Esym(ρ) (nuclear symmetry energy) information (stiff/soft)

 \rightarrow access to isospin dependence?

Strangeness: Flow and EoS

Nuclear equation of state (EOS): relation between energy/nucleon and density

 $\varepsilon(\rho,T) = \varepsilon_T(\rho,T) + \varepsilon_C(\rho,T=0) + \varepsilon_0$ $(\varepsilon = E/A)$ thermal compressional ground state energy

 \cdots k=380 MeV compression modulus κ =200 MeV Flow: particle emission pattern transverse to the reaction plane driven by pressure from overlap region

Cbm Strangeness performance

Tracking system allows for precise track and secondary vertex reconstruction, $\Delta p=1\%$ TOF for hadron ID

Excellent phase space coverage (y_{CM} coverage for all $\sqrt{s_{NN}}$)

- Reconstruction efficiency ~30%
- Event plane resolution $\Re 1 \cong 0.8$, $\Re 2 \cong 0.5$

Precision measurement of spectra and flow pattern (no data for Ξ, Ω available below AGS energies) Superior CBM performance to the STAR-FXT flow measurements

Dileptons

Electromagnetic radiation (γ and γ^{*}) emitted during full fireball evolution from all stages

 \rightarrow sensitive to the full duration/evolution of the collision.

 \rightarrow no strong interaction with medium \rightarrow escape the reaction volume unmodified

 $\rho \rightarrow e^+e^-$ (short lifetime) $\pi^0 / \eta \longrightarrow e^+ e^- \gamma$, ω $\ell \phi \longrightarrow e^+ e^-$, ω $\longrightarrow \pi^0 e^+ e^-$

Thermal radiation of medium \rightarrow black body rad.

Emission rate of thermal dileptons: unique direct access to early stage temperature of fireball

Dileptons are a unique probe of fireball lifetime, temperature, density, restoration of chiral symmetry, ….

Low-mass regime Intermediate-mass regime

Dileptons

Invariant mass slope measures radiating source T:

Flattening of caloric curve (T vs ε)

 \rightarrow positive evidence for a phase transition

Tripolt et al., NPA 982 (2019) 775 Li and Ko, PRC 95 (2017) no.5, 055203 Seck et al., PRC (2022), arXiv:2010.04614 [nucl-th] O. Savchuk et al., arXiv:2209.05267 [nucl-th]

CBM dilepton performance

Dileptons are rare probes! Isolation of thermal radiation by subtraction of measured decay cocktail $(\pi, \eta, \omega, \varphi)$, Drell-Yan, \bar{c} c (b b)

Decisive parameters for data quality: interaction rates (IR) and signal-to-combinatorial background ratio (S/CB)

Pavish Subramani Talks by: Cornelius Feier-Riesen

Expected dielectron performance first year, 5 days/ energy (6), 2x1010 events each, 100kHz \Rightarrow LMR: reconstructed with precision of 1.5 – 4.5% allows fireball lifetime measurement

Expected dimuon performance High statistics runs after first 3 years

 \Rightarrow Access IMR range with <10% errrors on T $_{\text{fireball}}$

Critical Fluctuations

At CEP or when crossing a 1st order phase transition: density fluctuations/ jump in density

- \rightarrow both yielding discontinuities/ fluctuations
- \rightarrow cumulants of baryon number measure derivatives of μ_B

$$
\chi_n^B \equiv \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} = \frac{\kappa_n[B]}{VT^3}
$$

Ratios of cumulants independent of volume

$$
\frac{\chi_4}{\chi_2} = \frac{\kappa_4}{\kappa_2} = \kappa \sigma^2 \qquad \kappa_4 = \langle N - \langle N \rangle \rangle^2 \text{ etc.}
$$

Non-monotonic trend of the higher moments $\kappa 4 / \kappa 2$ of netproton number distributions, visible in a beam energy scan?

CBM Critical Fluctuations performance

Measure event-by-event net-proton number $(p - anti-p)$

Sensitivity to features of the QCD phase diagram grows with the order of the moment

Detailed systematic studies of experimental effects is crucial: acceptance, centrality, baryon number conservation at high μ_B

Centrality determination with independent detector: avoids bias on e-by-e fluctuation observables

Studies employing FSD centrality detector ongoing

Low p_T and midrapidity coverage for all energies

Day-1 statistics sufficient to study cumulants of order > Ο(4)

Reconstruction efficiency allows for precision measurement of cumulants

CBM after 3 years – (improve STAR stat. errors by factor of 10):

– completion of the excitation function for κ_4 (p)

 $-$ first results on κ_6 (p)

− extension into strangeness sector 4 (Λ) *Talk by Beatriz Artur* ¹³

w/o CBWC

추 PHQMD

□ CBM

EPHOMD

CBM

The future is bright!

FAIR construction progressing SIS 100 tunnel ready CBM cave ready, Upstream platform is installed (Pre)-series production of CBM started

First beams in 2028/2029

Years 1-3: (first) energy scan, improved statistical errors of factor 10 vs. STAR Years 4-8: high statistics measurements \rightarrow Dilepton IMR, ultra-rare probes

Important milestone: mCBM @ SIS 18! Full system test Verification of triggerless-free-streaming readout Up to 10 MHz collision rates

Talk by Abhishek Anil Deshmukh

BACKUP

Cbm Strangeness performance

Identification of (multi-)strange particles via their decay topology:

large statistical significance for K^0_S , \wedge , Ξ , Ω as well as $\phi \rightarrow K+K$ allows multi-differential analysis of yield (flow, correlations polarization)

Strangeness

Strange hyperons:

- subthreshold production

- multi-strange hyperons: produced in sequencial collisions w/ K & Λ

=> sensitive to the density in the fireball: shed light on the compressibility of nuclear matter

=> flow measurements from hyperons to get insights into the EoS at high baryon densities \Rightarrow comparison of Ω /Ξ with chemical equilibrium multiplicities: potential sign for QGP

 \rightarrow S-/S+ ratio is expected to carry Esym(r) information (stiff/soft) \rightarrow access to isospin dependence?

G.C. Yong et al, *Phys.Rev.C* 106 (2022) 2, 024902 18

3.0

39/27

First 3 years scenario (as of May 2022)

 $\mathbf{E} \mathbf{S} \mathbf{I}$ FAIR

- Focus on beam energy scan
- 60 days / year beam on target \rightarrow factor 100 more statistics w.r.t. STAR FXT
- Different detector configurations (Piotr's talk)
- Subject to a reshaping depending on findings (e.g. long run at maximum $\sqrt{s_{NN}}$ with MUON setup)