

Bundesministerium für Bildung und Forschung

The CBM experiment at FAIR

Susanne Gläßel, IKF Frankfurt

Sept 26th 2024, FAIRNess, Croatia

CBM: QCD phase diagram at high μ_B

Experimental investigation of the region with approx. 500 MeV < μ_B < 850 MeV

Characterization of high μ_B matter

Phase transition: deconfinement + chiral symmetry restoration

- 1st order phase transition (PT)
- QCD Critical end point (CEP)
- new phases of QCD (e.g. quarkyonic matter)

Critical point predictions from theory

T ~ 90-120 MeV, μ_B ~500-650 MeV

If true, reachable in heavy-ion collisions at 3 < \sqrt{s} <5 GeV.

CBM: QCD phase diagram at high μ_B

Experimental investigation of region with approx. 500 MeV < μ_B < 850 MeV

Key observables – systematic measurements:

Dileptons

 \rightarrow Emissivity of dense baryonic matter: lifetime, temperature, density, in-medium properties

Fluctuations

 \rightarrow System transition via 1st order PT line, CEP

Hadrons, Strangeness, Charm → System in equilibrium, Equation of Stage (EoS), Flow, Vorticity, Hypernuclei

Correlations \rightarrow Flow, Vorticity, YN & YNN interactions

Almost unexplored (so far not accessible) in the high μ_B region

High μ_B facilities

T. Galatyuk, NPA 982 (2019), update 2023 https://github.com/tgalatyuk/interaction_rate_facilities, CBM, EPJA 53 3 (2017) 60 Worldwide effort to investigate high- μ_{B} region of the QCD phase diagram

Key observables are rare: Program needs precise data (statistics!) and sensitivity for rarest signals!

Systematic investigation in dependence on energy, system size/centrality

CBM: very high rate capability, energy range $3 < \sqrt{s_{NN}} < 5$ GeV

CBM detector for high interaction rates

CBM @ FAIR 2.5° - 25° polar angle coverage, tracking in large gap dipole magnet, particle ID downstream

Talks by :

Fixed target experiment

 \rightarrow obtain highest luminosities

Versatile detector systems

 \rightarrow optimal setup for given observable

Tracking based entirely on silicon

 $\rightarrow\,$ fast and precise track reconstruction

Free-streaming FEE

- \rightarrow nearly dead-time free data taking
- On-line event selection
- \rightarrow highly selective data reduction

315 full members from 10 countries47 full member institutions10 associated member institutions

RICH: Jesus Pena Rodriguez FSD: Radim Dvorak NCAL: Dachi Okropiridze STS: Dario Ramirez Lady Maryann Collazo Sánchez TRD: Nikolai Podgornov⁵

Strangeness

Strange hyperons:

- subthreshold production
- multi-strange hyperons: produced in sequencial collisions w/ K & Λ

$$\pi^{-,+}N(n,p) \rightarrow \Sigma^{-,+} \rightarrow \Lambda \Sigma^{-,+} \rightarrow \Xi^{-,0}$$

=> sensitive to the density in the fireball: shed light on the compressibility of nuclear matter

=> flow measurements from hyperons to get insights into the EoS at high baryon densities

=> comparison of Ω/Ξ with chemical equilibrium multiplicities: potential sign for QGP

 \rightarrow S-/S+ ratio is expected to carry E_{sym}(ρ) (nuclear symmetry energy) information (stiff/soft)

 \rightarrow access to isospin dependence?

Strangeness: Flow and EoS

Nuclear equation of state (EOS): relation between energy/nucleon and density

$$\begin{split} \varepsilon(\rho,T) &= \varepsilon_T(\rho,T) + \varepsilon_C(\rho,T=0) + \varepsilon_0 \qquad (\varepsilon = E \,/\,A) \\ \text{thermal compressional ground state energy} \end{split}$$

compression modulus $-\kappa = 380 \text{ MeV}$ $-\kappa = 200 \text{ MeV}$ Flow: particle emission pattern transverse to the reaction plane driven by pressure from overlap region

Cbm Strangeness performance

Tracking system allows for precise track and secondary vertex reconstruction, $\Delta p=1\%$ TOF for hadron ID

Excellent phase space coverage (y_{CM} coverage for all $\sqrt{s_{NN}}$)

- Reconstruction efficiency ~30%
- Event plane resolution $\Re 1 \cong 0.8$, $\Re 2 \cong 0.5$

Precision measurement of spectra and flow pattern (no data for Ξ , Ω available below AGS energies) Superior CBM performance to the STAR-FXT flow measurements

Dileptons

Electromagnetic radiation (γ and γ^*) emitted during full fireball evolution from all stages

 \rightarrow sensitive to the full duration/evolution of the collision.

 \rightarrow no strong interaction with medium \Rightarrow escape the reaction volume unmodified

 $\begin{array}{l} \rho \longrightarrow e^+ \, e^- \, (\text{short lifetime}) \\ \pi^0 \, / \, \eta \longrightarrow e^+ \, e^- \, \gamma, \, \omega \, / \, \varphi \longrightarrow e^+ \, e^-, \, \omega \longrightarrow \pi^0 \, e^+ \, e^- \end{array}$

Thermal radiation of medium \rightarrow black body rad.

Emission rate of thermal dileptons: unique direct access to early stage temperature of fireball

Dileptons are a unique probe of fireball lifetime, temperature, density, restoration of chiral symmetry,

Dileptons

Invariant mass slope measures radiating source T:

Flattening of caloric curve (T vs ε)

 \rightarrow positive evidence for a phase transition

Tripolt et al., NPA 982 (2019) 775 Li and Ko, PRC 95 (2017) no.5, 055203 Seck et al., PRC (2022), arXiv:2010.04614 [nucl-th] O. Savchuk et al., arXiv:2209.05267 [nucl-th]

CBM dilepton performance

Isolation of thermal radiation by subtraction of measured decay cocktail (π /, η , ω , φ), Drell-Yan, $\bar{c} c (\bar{b} b)$ Dileptons are rare probes!

Decisive parameters for data quality: interaction rates (IR) and signal-to-combinatorial background ratio (S/CB)

Expected dielectron performance first year, 5 days/ energy (6), 2x10¹⁰ events each, 100kHz => LMR: reconstructed with precision of 1.5 – 4.5% allows fireball lifetime measurement Expected dimuon performance High statistics runs after first 3 years

=> Access IMR range with <10% errors on $T_{fireball}$

Talks by: Cornelius Feier-Riesen Pavish Subramani

Critical Fluctuations

At CEP or when crossing a 1st order phase transition: density fluctuations/ jump in density

- \rightarrow both yielding discontinuities/ fluctuations
- \rightarrow cumulants of baryon number measure derivatives of μ_B

$$\chi_n^B \equiv \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} = \frac{\kappa_n[B]}{V T^3}$$

Ratios of cumulants independent of volume

$$\frac{\chi_4}{\chi_2} = \frac{\kappa_4}{\kappa_2} = \kappa \sigma^2 \qquad \kappa_4 = \langle N - \langle N \rangle \rangle^2 \text{ etc.}$$

Non-monotonic trend of the higher moments $\kappa 4/\kappa 2$ of netproton number distributions, visible in a beam energy scan?

CBM Critical Fluctuations performance

Measure event-by-event net-proton number (p - anti-p)

Sensitivity to features of the QCD phase diagram grows with the order of the moment

Detailed systematic studies of experimental effects is crucial: acceptance, centrality, baryon number conservation at high µ_B

Centrality determination with independent detector: avoids bias on e-by-e fluctuation observables

Studies employing FSD centrality detector ongoing

Talk by Beatriz Artur

Low $p_{\rm T}$ and midrapidity coverage for all energies

Day-1 statistics sufficient to study cumulants of order > O(4)

Reconstruction efficiency allows for precision measurement of cumulants

CBM after 3 years – (improve STAR stat. errors by factor of 10):

- completion of the excitation function for κ_4 (p)
- first results on $\kappa_6(p)$
- extension into strangeness sector κ_4 (Λ)

The future is bright!

FAIR construction progressing SIS 100 tunnel ready CBM cave ready, Upstream platform is installed (Pre)-series production of CBM started

First beams in 2028/2029

Years 1-3: (first) energy scan, improved statistical errors of factor 10 vs. STAR Years 4-8: high statistics measurements \rightarrow Dilepton IMR, ultra-rare probes

Important milestone: mCBM @ SIS 18! Full system test Verification of triggerless-free-streaming readout Up to 10 MHz collision rates

Talk by Abhishek Anil Deshmukh

BACKUP

Cbm Strangeness performance

Identification of (multi-)strange particles via their decay topology:

large statistical significance for K_S^0 , Λ , Ξ , Ω as well as $\phi \to K+K$ allows multi-differential analysis of yield (flow, correlations polarization)

Strangeness

Strange hyperons:

- subthreshold production

- multi-strange hyperons: produced in sequencial collisions w/ K & A

=> sensitive to the density in the fireball: shed light on the compressibility of nuclear matter => flow measurements from hyperons to get insights into the EoS at high baryon densities

= comparison of Ω/Ξ with chemical equilibrium multiplicities: potential sign for QGP

 \rightarrow S-/S+ ratio is expected to carry E_{sym}(r) information (stiff/soft) \rightarrow access to isospin dependence?

G.C. Yong et al, Phys.Rev.C 106 (2022) 2, 024902 18

3.0

39/27

First 3 years scenario (as of May 2022)

Year	Setup	Reaction	Beam Energies T _{iab} [AGeV]	Days on Target	Number of events	Remarks
0	ELEHAD	C+C, Ag+Ag, Au+Au	2,4,6,8,10,max	60		Commissioning
1	ELEHAD	Au+Au	2,4,6,8,10,max	30 (5 each)	2·10 ¹⁰ each	EB minBias
1	ELEHAD	C+C	2,4,6,8,10,max	18 (3 each)	4.10 ¹⁰ each	minBias
1	ELEHAD	p+Be	3,4,8,29	12 (3 each)	2·10 ¹¹ each	<u>minBias</u>
2	MUON	Au+Au	2,4,6,8,10,max	30 (5 each)	2·10 ¹¹ each	minBias
2	MUON	C+C	2,4,6,8,10,max	18 (3 each)	4·10 ¹¹ each	minBias
2	MUON	p+Be	3,4,8,29	12 (3 each)	2·10 ¹² each	<u>minBias</u>
3	HADR	Au+Au	2,4,6,8,10,max	12 (2 each)	4·10 ¹¹ each	EB + Selector(s)
3	HADR	C+C	2,4,6,8,10,max	6 (1 each)	8·10 ¹¹ each	
3	HADES	Ag+Ag	2,4	28 (14 each)	10 ¹⁰ each	
3	ELEHAD	Ag+Ag	2,4	8 (4 each)	2.1010 each	<u>minBias</u>

Setup	Included subsystems	Average day-1 interaction rate
ELEHAD	MVD,STS,RICH,TRD,TOF,FPW	0.1 MHz
MUON	STS,MUCH,TRD,TOF,FPW	1 MHz
HADR	STS,TRD,TOF,FPW	0.5 MHz

rs si rAiR

- Focus on beam energy scan
- 60 days / year beam on target → factor 100 more statistics w.r.t. STAR FXT
- Different detector configurations (Piotr's talk)
- Subject to a reshaping depending on findings (e.g. long run at maximum $\sqrt{s_{NN}}$ with MUON setup)