Feasibility Studies for Di-Electron Spectroscopy with CBM

Cornelius Feier-Riesen

Justus-Liebig-Universität Gießen

Motivation

[https://theory.gsi.de/~friman/trento_06.html]

- CBM: Compressed Baryonic Matter
- Explore QCD phase diagram at high densities and moderate temperatures
- Di-lepton spectroscopy: determine temperature and lifetime of fireball

Motivation

- Excess yield in LMR → fireball lifetime: extra radiation due to latent heat around PT (& CEP?)?
- Invariant mass slope (LMR & IMR) → flattening of caloric curve due to PT ?

A rise in the excess yield and constancy in Temperature would be an indication of a 1st order phase transistion.

Track Selection for Di-Electron Analysis at CBM

[Peter Senger, CBM Collaboration Meeting; Mar 24]

Problems we have to deal with:

- Many π⁰ are created, decaying into 2γ or γe+e-
- A lot of material is deposited before the RICH
 - \rightarrow enhancement of γ conversion and secondary electrons
- Secondaries are seen in RICH and TRD and can easily be matched to tracks of charged pions
- Suppression of background is difficult → good tracking is essential for background suppression

Track Selection for Di-Electron Analysis at CBM

Sequence of Analysis cuts used for Di-Electron Analysis.

Performance

- Efficiency for electrons (in geometrical acceptance) to be reconstructed in all detectors ε ≈ 80 %
- Pion suppression \approx 15000 ($S_{\pi} = \frac{\text{#reconstructed pions}}{\text{# rec. pions that passed El-ID step}}$
- Signal-to-Background ratio S/BG ≈ 1/100

Current Status of Di-Electron Analysis

- Contributions to the background are dominated by physical background, i.e. electrons from γ conversion and π⁰ decay
- Also misidentified pions form a large part of the background

Current Status of Di-Electron Analysis

- Ratio S/BG \approx 1/100 \implies not possible to extract signal by means of e.g. see any peaks in N_{same}^{\pm} (= B_{MC} + MC Cocktail) spectrum.
- Estimate background with mathematical expression (CB_{calc}, calculated combinatorial background) and subtract it from total e+e- spectra.

$$CB_{calc} = 2 \ k \sqrt{B^{++}B^{--}}, \quad B^{++} = e^+e^+$$
 yields from same events
 $k = \frac{b^{\pm}}{2 \sqrt{b^{++}b^{--}}}, \qquad b^{++} = e^+e^+$ yields from mixed events

- Problem in our simulations:
 - Two large numbers are subtracted to get a small number as result
 - not sufficient statistics (5x10⁶ events)
 - → large fluctuations in calculated signal

Current Status of Di-Electron Analysis

- → Large fluctuations in calculated signal
- Result does not reflect the true signal
- Idea: Enhance statistics by implementing Fast Simulation techniques (Random Events) to enable large statistics for constructing a background with small fluctuations

Implementation of a Fast Simulation (Random Event) Procedure

- Fast Simulations are based generally on approximations of geometry / models and parametrisations of outputs.
- Here: use output of "Slow Simulations" as basis to create large numbers of randomly generated events (via using GetRandom ()), seperately for each particle or charge
- Which parameters are needed to construct the background?

$$M_{\rm ee} = 2\sqrt{P_+ \cdot P_-} \cdot \sin\left(\frac{\vartheta}{2}\right)$$

→ Hence, only two parameters are needed:

- Multiplicity: Occurence of a particle per event after electronidentification
- **3D Momentum distribution of that particle**

[Andreas Salzburger: Fast Simulation in ATLAS; talk; 2013]

Cornelius Feier-Riesen

Implementation of a Fast Simulation (Random Event) Procedure

Conventional Background B_{MC} with a statistics of $5x10^6$ compared to the background obtained by Random Event Techniques (B_{RE}) with a statistics of $20x10^9$ events.

Result

Signal (red), calculated by subtracting the Calculated Combinatorial Background (CB_{calc}) from the e+e- yield, obtained by Random Event techniques (left) and conventional methods (right), in comparison to the MC cocktail (blue).

Reduced Signal

Right: "Reduced" signal: Obtained signal minus electrons from known sources (π^0 , η_D , ω , ω_D , ϕ ; red). Remain should only electrons from in-medium rho ($\rho_{i.m.}$) and QGP. In blue: MC input $\rho_{i.m.}$ + QGP. From comparison with NN references at masses below 1 Gev/c² the excess yield can be determined.

Temperature of the Medium

Reduced Signal with temperature fit.

if $M \gg T$:

(-

$$\frac{\mathrm{d}N}{\mathrm{d}M} \propto (MT)^{3/2} \exp(-M/T)$$

- Acceptance and efficiency corrections are not applied yet in these results (bias \approx 8 MeV).
- Location of data points is corrected due to asymmetric bin population to get true fit results ¹⁾

¹⁾ G.D. Lafferty, T.R. Wyatt: "Where to stick your data points: The treatment of measurements within wide bins". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 355, Issues 2–3, 1995, Pages 541-547, ISSN 0168-9002, https://doi.org/10.1016/0168-9002(94)01112-5.

Statistical Errors

 Statistical errors calculated for quick energy scan at first year of CBM running (4-5 days beam each for 5-6 energies with moderate rate)

In last bin (1.5-2.5 GeV/c²):

 $\frac{S}{N} \approx \frac{1}{300}$ $N \approx 60,000^{1)} \rightarrow \Delta N = \sqrt{N} = 245$ $S = N - CB_{calc} \rightarrow \Delta S \approx \Delta N^{2} = 245 \approx S = 200$

 Ratio S/BG will be improved: e.g. MVD not included here yet (reduce contributions of γ and π⁰); better rejecting of pions and protons; etc.

Calculated signal with statistical error bars. In the IMR, the size of the error is about the size of the signal itself.

¹⁾ for full statistics of 20x10⁹ events

²⁾ $\Delta CB_{calc} \ll \Delta S$ because of any wanted mixing depth

Summary and Outlook

- Feasibility for Di-Electron measurement is shown
- Fast Simulation procedures were developed to enable realistic studies
- Suppression of background is difficult; improvements are ongoing and we are on well that way
- First year planned for quick energy scan; Thorough measurements for each energy will follow

Thank you for your attention!

Thanks to: Claudia Höhne, Jan-Hendrik Otto, Marten Becker