Forward spectator detector for CBM Radim Dvořák **FNSPE CTU**

FAIR next generation scientists - 8th Edition Workshop

Forward spectator detector for CBM

Radim Dvořák

Motivation

- Measurement of the properties of the strongly interacting matter at high densities
- Phase diagram of strongly interacting matter
 - Phase transition and search for critical point
- Properties of neutron stars

X(fm)

X(fm)

Forward spectator detector for CBM

X (fm)

2/15

X(fm)

Measurement of flow

- Flow = azimuthal anisotropy of detected particles
- One of the most important observables for CBM
- Event plane

Radim Dvořák

Forward spectator detector for CBM

FSD detector

- Part of the CBM experiment
- Replacement of the PSD
- Centrality and reaction plane determination
- Scintillator based detector with PMTs
 - Measurement of protons and fragments

Acceptance

- DCMQGSM model, 12 AGeV collision
- Rapidity plot of primary particles

Radim Dvořák

Rapidity plot of primary particles with a point in FSD

Energy deposition in FSD

- Identification of Z=1 particles
 - dE = [3, 5] MeV
 - "beta" of a hit > 0.993
 - Line between primary vertex and FSD hit

Forward spectator detector for CBM

Effect of magnetic field

- Information about RP is carried by primary protons
- Different rapidities centered in different x position due to the magnetic field
- y = [3.3 3.6] -> x = 30.6 cm
- y = [3.0 3.3] -> x = 36.6 cm
- $y=[2.7-3.0] \rightarrow x = 46.8$ cm
- $y=[2.4-2.7] \rightarrow x = 64.7$ cm

Forward spectator detector for CBM

Purity of detected proton signal

Ratio of hits from primary protons to all hits

Radim Dvořák

Forward spectator detector for CBM

• Mean rapidity of primary protons

Measuring of event plane

- Qn framework
 - Correcting for detector acceptance
- Definition of Q vectors
- Normalization SP and EP
- Corrections:
 - Recenter, Twist, Rescale

Forward spectator detector for CBM

Subevents

- Subevents:
 - Center: x=35 cm
 - IN=[0,14] cm (58% purity)
 - MID=[14,24] cm (42% purity)
 - OUT=[24,40] cm (23% purity)
- Same number of protons per subevent
- For systematic uncertainty estimation center varied ± 5 cm

10/15

Resolution using MC reaction plane

- Correlation of Q vector with RP from MC
 - Q vector after all corrections
- Better resolution for y-axis
- No big difference between differently selected subevents
 - Qn framework seems to work

Forward spectator detector for CBM

Factorisation

- Checking correlation between subevents ullet
 - Can partially be of physics origin
- Good agreement for pure protons simulation ullet
- Full event ullet
 - yy component works well
 - Difference observed in xx term \bullet

Radim Dvořák

Resolution 3 subevents method

 $R^A_{n,\alpha}$

- Resolution obtained from data
- Compared to MC
- Good agreement for pure proton simulation
- xx difference not caused by rapidity shift
- In full event difference in xx term likely caused by background

Forward spectator detector for CBM

Radim Dvořák

$$\frac{Q_{n,\alpha}^A Q_{n,\alpha}^B \rangle \langle Q_{n,\alpha}^A Q_{n,\alpha}^C \rangle}{\langle Q_{n,\alpha}^B Q_{n,\alpha}^C \rangle},$$

Measuring of v1 for pions

- v1 of pions in rapidity 2.4-2.6
 - Angle of pions from MC
- Good agreement when using yy-term
 - Not sensitive to the position of subevents center
- xx-term does not agree under study

Radim Dvořák

Summary

- FSD is a key detector for the CBM experiment
- Geometry of CBM (dipole magnetic field) is challenging for reconstruction of reaction plane
- Using Qn tools, event plane can be reconstructed, and I have showed you first results on flow of pions
- Next steps:
 - Study effects of background
 - Centrality studies

Radim Dvořák

5

Resolution using MC reaction plane

- Correlation of Q vector with RP from MC
 - Q vector after all corrections
- No big difference between differently selected subevenst
 - Qn framework seems to work

Corrections

Charge deposition

