Module and ladder characterization and burn-in tests of the STS for the CBM experiment

FAIRNESS 2024

L.M. Collazo Sánchez^{1,2}, A. Rodríguez Rodríguez², D. Rodríguez Garcés^{1,2}, M. Teklishyn² for the CBM Collaboration

¹Goethe-Universität (Frankfurt), ²GSI (Darmstadt)

September 26th , 2024

The CBM experiment - STS

Compressed Baryonic Matter

The **CBM** experiment intends to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus nucleus collisions.

 \triangleright The measurements will be performed at beam-target interaction rates up to 10 MHz.

.

- Maintaining material budget within $2 8\% X_0$.
- High granularity, spatial, and timing precision.

The STS Silicon Tracking System

The CBM experiment - STS

Compressed Baryonic Matter

The **CBM** experiment intends to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus nucleus collisions.

- \triangleright The measurements will be performed at beam-target interaction rates up to 10 MHz.
- Maintaining material budget within $2 8\% X_0$.
- High granularity, spatial, and timing precision.

The STS Silicon Tracking System

 \triangleright A novel integration approach was employed where the read-out electronics are placed outside of the sensitive volume. .

CBM - STS module

STS detector consists of **876** DSDM micro-strip modules.

Each double-sided silicon strip sensor is connected via a stack of low-mass microcables to two Front-End Boards (FEBs).

Each FEB has eight custom-designed STS-XYTER ASIC (SMX). After module assembly, a 2.7 mm thick aluminum

The STS-XYTERv2 ASIC under the microscope.

cooling shelf is glued (STYCAST) between FEBs. Necessary step to ensure proper cooling of the FEB (Average power dissipation per FEB $~11$ W).

STS assembling sequence and structure

Ø **40** C Frames in STS

 \triangleright Each Ladder carries up to 10 modules **►** Each C Frame contains between two and four ladders \rightarrow In total STS will be built with 106 ladders and 876 modules

Module Assembly

STS has started the module series production

> Produced: 264 (30% of total) Tested: 181 (20.6% of total) Assembled in Ladder: 26

Calibration and tests of the STS modules

How do we test the modules?

Module Testing & Burn-in First step:

 \triangleright Placing the module in a carrier

Main objectives of Module Testing:

- \triangleright Evaluate modules functional operation
	- \triangleright Sensor current-voltage characteristic (IV)
	- \triangleright Calibrate the Front-End Electronics (FEE)
	- \triangleright Estimate noise level

 \triangleright Evaluate the thermal performance of the full assembly object at the final operational temperatures

Voltage scan

Module Testing

Reverese bias voltage scan

One IV setup:

- \triangleright a module / every 25 min
- \triangleright It allows to compare the measurements with the results of the Electrical Inspection.
- \triangleright A sensor is assigned to a given position in the detector according to the particle flux that it will receive in operation so that the best grades will go to the region of higher exposure to particle, and the sensor is biased depending on the assigned grade.
- \triangleright Edge cleaning and thermal treatment for modules identified with an early breakdown. Possibility to recover modules with IV issues due to high humidity.

Functional performance

Module Testing

Functional Tests

- \triangleright Three modular testing setups:
	- The modular testing setups:
 \triangleright The possibility to study a module with issues while $\frac{2}{5}$ continuing with regular series testing

Comparison of the ADC threshold distribution before (a) and after (b) charge calibration.

- \triangleright The response function of each discriminators in a channel are fitted with erfc.
	- \triangleright mean represents the effective discriminator threshold
	- Ø σ represents the ENC value in units of the internal pulse generator

Functional performance

Module Testing

Functional Tests ENC [e] 5000 ENC module M3DL3B0001120B2 4500 n-side Check ASICs functionalities: p-side oroken ch 4000 par sensor \triangleright downlinks, uplinks enc⁻⁻asic **► ASIC potentials VDDM, temperature** 2500 Module ADC calibration 3000 \triangleright ENC performance 2500 Identification of broken channels
2000 Z-strip: 17 pF extra from $\left| \int \right|$ routing line (metal 2) $\left| \int \right|$ 1500 the double metal routing 1000 *[Panasenko,](https://ub01.uni-tuebingen.de/xmlui/handle/10900/139231) I., Ph.D. diss.,* 500 r/o strip (metal 1) *Univ. of Tübingen, 2022.* 0^\sqsubset_{O} 128 256 384 512 640 768 896 1024 Channel number 1023 0 $L_{\text{sensor}} \cdot 1.02 \frac{\text{pF}}{\text{cm}} + L_{\text{cable}} \cdot 0.38 \frac{\text{pF}}{\text{cm}}$ $ENC =$ $\cdot 25$

Equivalent Noise Charge (ENC) derived from an S-curves scan in every channel, where the discriminator response is evaluated in a pulse amplitude scan

 $\rm cm$

microcable

ASIC

 cm

sensor

Two burn-in setups: • two module / 6.5h *1 thermal cycle (includes 1 power cycles atmax. temp. and 5 power cycles atmin. temp.)* $+15$ -20 Time STS operation temperature: -20°C Test parameters: The **temperature** ranges: [-20,15] in LAUDA chiller, and [-15, 20] in BINDER climatic chamber **Thermal cycles**: 3 thermal cycles **Power-ups at low temp:** 5 per thermal cycle **Power-ups at high temp:** 1 per thermal cycle Continuous nitrogen gas flows inside the module enclosure T_coolant T_FEB **Burn-in** Burn-in Test Thermal stress test

QA for series module production

Module characterization

Module Testing results for the first three assembled ladders

Thermal stress test

Module Burn-in results

Overall results: 150 / 150 modules **OK** 16 ASICs per module ≈ 2400 functional ASICs

What data do we collect?

- Power consumption
- Temperature
- Operation potentials in FEE
- Number of broken channels

Experience with first ladders

Ladder assembly

Ladder Assembly:

Ladder characterization

The construction and setting up of a Ladder test box:

Features of the Ladder test box:

- \triangleright Modular design: can test all types of STS ladders
- \triangleright Light tight, EMI protection
- \triangleright Integrate LV, HV, data readout and cooling interfaces.

The test and characterization of the ladder started with the first of series fully assembled ladder: L3DL300112 (Ladder type 12, holding 10 modules with different form factors):

- \triangleright 6 modules built from 4.2 \times 6.2 cm² sensors (Electrical grade B, i.e., EOL biasing up to 350 V)
- \triangleright 2 modules built from 4.2 \times 6.2 cm² sensors (Electrical grade C, i.e., EOL biasing up to 250 V)
- \triangleright 2 modules built from 12.4 \times 6.2 cm² sensors (Electrical grade C, i.e., EOL biasing up to 250 V)

CAD drawing of a Ladder 12 type.

Ladder characterization

 \triangleright The number of broken channels suffered a very small deterioration during the assembly procedure.

Ladder characterization

ENC characterization for each module in the ladder

The large percentual deviation in the Z-strips of module B3 appeared after reworking the position of the microcables.

 \triangleright Comparison of the module's ENC measured mounted onto the ladder in two different stages:

- Ø **Std_L** refers to the standalone biasing and operation of 1 module
- Ø **ALL** refers to the simultaneous biasing and configuration of all modules

Module and ladder characterization and burn-in tests

CONCLUSIONS

- \triangleright The test and characterization of fully assembled modules is fundamental to ensure reliable performance, improve their operation, and correctly interpret the collected data in the final detector.
- \triangleright The burn-in test identifies potential weaknesses and evaluates the robustness of the electronics and functionality of the whole module under realistic operational conditions.
- \triangleright The ladder test ensure that the module proper functionality and performance are preserved.

What are the next steps in the assembly?:

- \triangleright Each ladder will be placed in the corresponding C Frame
- \triangleright It will be integrated with the final components: Cooling interfaces, Readout boards, Power boards, LV, HV and data cables.
- \triangleright C frames will be tested to ensure proper operation.
- \triangleright Each C Frame will be mounted in the mainframe, and further tests are foreseen.
- Ø Transported to the CBM cave, where it will be finally operated.

THANKS