$\Lambda(1405)$ reconstruction in $\Sigma^0 \pi^0$ decay channel with HADES detector

Anna Władyszewska

- I. Introduction and motivations
 - Hypotheses on the structure of $\Lambda(1405)$
 - Results from other experiments
 - HADES Detector
- II. Inclusive analysis $\Lambda(1405) \rightarrow \Sigma^{0}(\Lambda + \gamma) + \pi^{0}$
 - Λ->pπ⁻ (topology & mass cuts)
 - Σº->Λγ (sideband method)
 - comparison with estimates from cross sections

III. Exclusive analysis

p+K⁺+Λ(1405)->Σ⁰(Λ+γ)+π⁰

- π^0 identified via missing mass method
- Λ(1405), Σ⁰, Λ(1520) signals
- Estimates from cross sections

IV. Summary & outlook

Λ(1405) - hypotheses

1) Before the quark model: anty-K N bound state. First seen in: $K^- p \rightarrow \Sigma 3\pi$

Alston M. H. et al. Study of resonances of the Σ - π system. Phys. Rev. Lett., 6:698–702, 1961.

Serves well for deeply bound hypernuclei ppK- concept

2) Dynamically generated meson-baryon resonance molecule: $\Sigma \pi$. <= From the leading order chiral SU(3) meson-baryon scattering Lagrangian.

An excellent description of the K⁻ p, K⁰n, $\pi^0\Lambda$, $\pi^{\pm}\Sigma^{\mp}$, $\pi^0\Sigma^0$ scattering data and the $\pi\Sigma$ mass distribution

Kaiser N., Siegel P.B., Weise W. Chiral dynamics and the low-energy kaon - nucleon interaction. Nucl. Phys. A, 594: 325–345, 1995.

Previous results

Peak position for different-sign $(\Sigma \pi)^0$ channels:

S. Prakhov et al K-p $\rightarrow \pi 0\pi 0\Sigma 0$ at p(K-) = 514 MeV/c to 750 MeV/c and with other $\pi 0\pi 0$ production (2004)

 $\pi^{-}p$ collisions

pp collisions

J.Siebenson and L. Fabbietti Investigation of the $\Lambda(1405)$ line shape in pp collisions (2013)

Peak position for different entrance channels:

 $pp \rightarrow pK^+\Lambda(1405) \rightarrow pK^+\Sigma^0\pi^0$

I. Zychor et al Lineshape of the $\Lambda(1405)$ Hyperon Measured Through its $\Sigma 0\pi 0$ Decay (2008)

Previous results

Line shape analysis

Mandelstam term:

$$t = (p_{beam} - p_{K^+})^2$$

(a.u.)

Cross section do/dM

1.35

 $0.35 < -(t - t_{min}) < 0.6$

N. Wid 105) Hyperon to $\Sigma 0\pi 0$ Measured at GlueX, 2022

 $\gamma p \rightarrow K^+ \Sigma^0 \pi^0$

Previous results: HADES

G. Agakishiev et al. Baryonic resonances close to the KN threshold: the case of $\Lambda(1405)$ in pp collisions (2013)

Channel of interest – with $\Sigma^0 \pi^0$

With γ -s - not available for $\Sigma(1385)$ **Possibility to disentangle** $\Lambda(1405)$ from $\Sigma(1385)$ with ECAL

High Acceptance DiElectron Spectrometer

- Fixed target
- proton **4.5 GeV** beam from SIS18
- Azymutal acceptance: 85%

Magnetic spetrometer (**H**ADES): z Mini Drift Chambers (MDC-s), polar acceptance 18°-85°, **charged products**: momenta, production vertexes, energy losses

Forward Detector - straw detectors (tracks and energy losses), Resistive Plate Chambers (time-of-flight measurements), 0.5°-6.5°, **protons**

ECAL calorimeter, resolution ~ 6%/E^{1/2}, lead glass, 16°-45°: photons

Trigger systems – events selection

- Inner Time of Flight detector (**iTOF**) few **SiPM**-s z from the same scintilator have to fire
- Multiplicity and Electron Trigger Array (META): Resistive Plate Chambers RPC (18°-44°) and scintilating detector TOF (44°-88°)

Two systems:

- PT2 minimum bias: min. 1 signal in iTOF + 1 signal in META in corresponding sectors (1 coincidence)
- **PT3:** min. 3 signals in iTOF + 2 in META (2 coincidences + 1 signal in iTOF without coincidence)

Starting conditions – inclusive analysis

Σ⁰->Λ(->pπ)**γ** inclusive analysis

Background substraction with sideband method:

RED histogram: Pseudo-signal of Σ^0 created with **SB** scalled to the same integral as bkg under Lambda peak **BLUE**: $\Sigma 0$ signal created with Lambda peak **GREEN**: BLUE minus RED

12

$\Lambda(1115) = p\pi^{-1}$ and Sigma0-> $\Lambda(-p\pi^{-})\gamma$ - inlusive σ-s estimations

Efficiencies (ε) here are specified only for production channels with p nad K+ (from PLUTO & GEANT sim), while more channels could be taken into account with different generators (Smash, GiBBU).

Exclusive analysis for **A(1405)** reconstruction

700

650

600

550

500

450

400

350

300

- PT3 trigger
- All already mentioned cuts and selection criterias
- Cut around Sigma⁰ mass peak ~ \pm 2.5 σ
- K⁺ PID: graphical cut on m vs. p

PID + 8000 600(0.6 400(0.4 200(0 kaon PID 200 1400 p*q [MeV/c] \(1405

Tagging protons:

- either in HADES (full PID) or track in FD (assumed to be proton-momentum calculated from TOF)
- used for Λ reco / not used for Λ reco

=> HH, FH, HF, FF cases – separately and combined while non of the proton used for Λ reco is used as the proton coming from the event vertex

Shape check between different p_{H/F} p_{H/F} cases with PLUTO&GEANT simulation

Different acceptances of FD (forward production detection) and HADES lead to the detection of heavy hyperons emitted in different directions, depending on t

Similar spectrum shapes for both H & F cases suggest that we can add results from different cases and maybe even discuss the line shapes differences between them when those seen in data

 π_0 as missing mass squared (H + FT all cases) 6000 DATA GAUSS: $pK^{+}\Lambda(1405) + pK^{+}\Lambda(1520) + pK^{+}\Sigma^{0}\pi^{0}$ Mean: 22726.5 5000 GAUSS FIT Sigma: 16389.0 Chi2: 65.6 4000 NDF: 17 Integral $\Lambda(1405) + \Lambda(1520) + \Sigma^0 \pi^0$: 6521 3000 **HADES** 2000 pp@4.5 GeV preliminary 1000 $\times 10^{3}$ _100 -50 $MM^{2}(K^{+}p\Sigma^{0})$ [MeV²/c⁴] 0

Estimations of $\Lambda(1405)$ signal from cross sections

 $\mathcal{L}_{days: 37, 50, 61-67} \sim 2/pb$ (Available $\mathcal{L} \sim 6/pb$)

Λ(1405) threshold: 2.84 GeV

Excess energy: 3.46 GeV - 2.84 GeV = 0.62 GeV

 $\sigma_{pp \to \Lambda X} = 47.97\epsilon + 292.6\epsilon^2 - 45.36\epsilon^3 \mu b = 131 \,\mu b$

Taking into account feed-down of Λ from Σ^0 decay:

 $\frac{\sigma_{\Lambda X}}{\sigma_{\Sigma^0 X}}(\epsilon) = 2.215 - 0.027\epsilon = 2.198$

```
\sigma_{\Lambda X} = 131 \ \mu b - (131 \ \mu b / 2.198) = 71 \ \mu b
```

```
Considering assumed* \sigma_{\Lambda X}/\sigma_{\Lambda(1405)X} ratio:
```

 $\sigma_{\Lambda(1405)X} \sim 24 \,\mu b$ *

 $\epsilon_{\Lambda(1405)} = 0.1\%$, $BR_{\Lambda(1405)->\Sigma0\pi0} = 33\%$

 $N_{\Lambda(1405)X}$ = 2e12 x 2.4e-5 x 1e-3 x 0.64 x 0.33 = 10 000

*G. Agakishiev et al. Baryonic resonances close to the KN threshold: the case of A(1405) in pp collisions (2013)

Measured for p(3.5 GeV)+p: $\sigma_{pK+\Lambda(1405)} \sim 9 \,\mu b \,*$ $N_{\Lambda(1405)} = 2e12 \times 9e-6 \times 1e-3 \times 0.64 \times 0.33$ = 3 800

At 4.5 GeV one could expect: **3 800 > N**_{pK+Λ(1405)} **> 10 000**

Estimations of $\Lambda(1520)$ signal from cross sections

 $\mathcal{L}_{days: 37, 50, 61-67} \sim 2/pb$ (Available $\mathcal{L} \sim 6/pb$)

Λ(1520) threshold: 2.95 GeV

Excess energy: 3.46 GeV - 2.84 GeV = 0.51 GeV

 $\sigma_{pp \to \Lambda X} = 47.97\epsilon + 292.6\epsilon^2 - 45.36\epsilon^3 \mu b = 94 \,\mu b$

Taking into account feed-down of Λ from Σ^0 decay:

 $\frac{\sigma_{\Lambda X}}{\sigma_{\Sigma^0 X}}(\epsilon) = 2.215 - 0.027\epsilon = 2.2$

 $\sigma_{\Lambda X}$ = 94 μb - (94 μb / 2.2) = 51 μb

 $\sigma_{\Lambda(1520)X} \sim 51 \ \mu b \ *, \ \epsilon_{\Lambda(1520)} = 0.1\%, \ BR_{\Lambda(1520) \rightarrow 50\pi0} = 14\%$ $N_{\Lambda(1520)} = 2e12 \ x \ 1e-3 \ x \ 5.1e-5 \ x \ 0.64 \ x \ 0.14 = 3 \ 000$

Measured for p(3.5 GeV)+p: $\sigma_{pK+\Lambda(1520)} \sim 5.6 \,\mu b \,*$ $N_{\Lambda(1520)} = 2e12 \,x \, 5.6e-6 \,x \, 1e-3 \,x \, 0.64 \,x \, 0.14$ $= 1 \,000$

At 4.5 GeV one could expect: **1 000** > **N**_{pK+Λ(1520)} > **9 100**

*G. Agakishiev et al. Baryonic resonances close to the KN threshold: the case of $\Lambda(1405)$ in pp collisions (2013)

Simulation histograms of $\Lambda(1405)$, $\Lambda(1520)$ are scalled to the down limit integrals (previous slides) while the rest of π^0 signal is assigned to $\Sigma^0 \pi^0$

Huge peak in 0 corresponds to $pK^+\Sigma^0$ channel

 $\Lambda(1405)$ H + FT (all cases)

Estimations of Σ^0 signal from cross sections

 $\mathcal{L}_{days: 37, 50, 61-67} \sim 2/pb$ (Available $\mathcal{L} \sim 6/pb$)

$$σ_{pK+\Sigma0} \sim 15 \, \mu b \, **, \, \epsilon_{\Sigma0} = 0.16\%$$

N_{pK+Σ0} = 2e12 x 1.5e-5 x 1.6e-3 x 0.64 = **30 000**

Estimated for 4.5 GeV: $N_{50} \sim 30000$, while in data:

 $\Lambda(1405)$ H + FT (all cases)

22

Different magnitudes of contributions from different channels needs to be considered.

N_{pK+Λ(1405)} ~ 8 000 - when scalling to the maximum value in data

Visible shift of $\Lambda(1405)$ to the lower values

Potential higher mass resonances visible

1/3 of the collected data (1/3) luminosity) was analysed as for now

 $3800 > N_{pK+\Lambda(1405)} > 10000$

> 9 100

Comparison between different $p_{\text{H/F}}\,p_{\text{H/F}}\,\text{cases}\,\text{DATA}$

Contributions from different resonant and unresonant channels seem to be different between the HH and FH/HF cases

SUMMARY

Inclusive analysis $\Sigma^{0} \rightarrow \Lambda(- \rightarrow \pi^{-}p) + \gamma$)

- Relatively good agreemnet between cross section and number of Λ-s seen in data for PT2
- But factor down 2 for Σ^0 -s

To do:

- Consider the usage of different simulation generators (Smash, GiBUU) -> better efficiency prediction
- Systematic study of photons selection cuts and their influence od sig/bkg of Σ^0

Exclusive analysis $p+K^++\Lambda(1405)->\Sigma^0(\Lambda+\gamma)+\pi^0$

- $\Lambda(1405)$ is found in $\Sigma^0 \pi^0$ decay channel for the first time in p+p colisions in HADES!
- Mass peak shifted towards lower masses from 1405 MeV/c²
- Potentialy seen line shape difference between HH case and FH/HF (for different proton acceptances)

To do:

- Kinematic refit
- Analysis of p+K⁺+ Λ (1405)(-> $\Sigma^{\pm}\pi^{\mp}$)