CP violation tests in hyperon decays at BESIII

Varvara Batozskaya on behalf of the BESIII collaboration

Institute of High Energy Physics, Beijing, China National Centre for Nuclear Research, Warsaw, Poland

> FAIR next generation scientists 8th Edition Workshop Donji Seget, Croatia 23-27 September 2024

Introduction to hadron physics

- Two main questions to particle physics:
 - What are the most elementary building blocks of matter?
 - What are the forces between them?
- SM is well-established theoretical description of fundamental particles and their interactions
- Building blocks:
 - Quarks and leptons
 - Forces mediated by exchange of gauge bosons associated with weak, electromagnetic and strong interactions

- SM is successfully tested by numerous experiments discovered a number of:
 - Non-standard hadronic states with properties indicating their complex substructure [PhysRept873(2020)1]
 - Conventional hadrons: $q\bar{q}$ mesons and qqq baryons [PhysLett8(1964)214]

Hadrons: conventional & exotic

[NatureRevPhys1(2019)480]

Non-standard hadrons

Hadrons: conventional & exotic

[NatureRevPhys1(2019)480]

None of exotic hadrons is settled!

Varvara Batozskaya

CPV in hyperons at BESIII

26/09/24, FAIRNESS2024 3/27

Main contributors to exotic hadrons

 $\bullet \ e^+e^- \ {\rm collider}$

Hadron collider

* Not all experiments are covered

- X: neutral non-vector states $B^{\pm} \to K^{\pm} \mathbf{X} \to K(\pi^+\pi^- J/\psi)$
- X(3872):
 - First discovered by Belle, $N_{\rm evt}\sim 36$
 - Later confirmed by other experiments

- X: neutral non-vector states $B^{\pm} \to K^{\pm} \mathbf{X} \to K(\pi^+\pi^- J/\psi)$
- X(3872):
 - First discovered by Belle, $N_{\rm evt}\sim 36$
 - Later confirmed by other experiments
- Y: neutral vector states $e^+e^- \rightarrow \gamma_{\rm ISR} \mathbf{Y} \rightarrow \gamma_{\rm ISR} (\pi^+\pi^- J/\psi)$
- Y(4260):
 - + First discovered by Babar, $N_{\rm evt} \sim 125$
 - Later confirmed by other experiments

- X: neutral non-vector states $B^{\pm} \to K^{\pm} \mathbf{X} \to K(\pi^+\pi^- J/\psi)$
- X(3872):
 - First discovered by Belle, $N_{\rm evt}\sim 36$
 - Later confirmed by other experiments
- **Y**: neutral vector states $e^+e^- \rightarrow \gamma_{\rm ISR} \mathbf{Y} \rightarrow \gamma_{\rm ISR} (\pi^+\pi^- J/\psi)$
- Y(4260):
 - First discovered by Babar, $N_{\rm evt}\sim 125$
 - Later confirmed by other experiments
- Z: charged, clearly multi-quark states $B \to K {f Z}^\pm \to K(\pi^\pm \psi')$
- $Z^{\pm}(4430)$:
 - First discovered by Belle, $N_{\rm evt}\sim 121$
 - Not confirmed by Babar
 - Confirmed by LHCb

BESIII hadron discoveries

Varvara Batozskaya

26/09/24, FAIRNESS2024 6/27

BESIII hadron discoveries

- $\bullet~$ States produced directly in e^+e^- collision with no clear interpretation
- States with exotic flavour combinations decaying into heavy mesons
- New light states decaying into mesons
- State consistent with conventional $c\bar{c}$ meson
- New light baryon states
- State with exotic J^{PC}

Varvara Batozskaya

Experimental facility: BEPCII and BESIII

BESIII @ BEPCII

[Nucl.Instrum.Meth.A598(2009)7]

- Beijing Electron-Positron Collider (BEPCII)
 - e^+e^- collider with 2.0 GeV $< E_{\rm CMS} < 4.95$ GeV
 - $\mathcal{L}_{peak} = 10^{33} \text{cm}^{-2} \text{s}^{-1}$
 - Data taking since 2009

- Beijing Spectrometer (BESIII)
- Optimized for flavour physics
- Covers 93% of 4π solid angle
- 1.0 T super-condacting solenoid

- Momentum resolution: $\sigma(p)/p = 0.5\% \text{ at } 1 \text{ GeV/c}$
- Time resolution: 68 (65) ps in the barrel (end cap)

Varvara Batozskaya

CPV in hyperons at BESIII

26/09/24, FAIRNESS2024 8/27

BESIII data sample

- World's largest charmonia sample:
 - $N_{J/\psi} \sim 10^{10}$
 - $N_{\psi(2S)} \sim 3 \cdot 10^9$

• Full baryon-antibaryon octet kinematically accessible

Resonance	Pair	$\epsilon(\%)$	$\mathcal{B}(\cdot 10^{-4})$	Reference
	$\Lambda \bar{\Lambda}$	42.37 ± 0.14	19.43 ± 0.03	[DDD05(2017)052002]
	$\Sigma^0 \overline{\Sigma}^0$	17.83 ± 0.06	11.64 ± 0.04	[PRD95(2017)052005]
J/ψ	$\Sigma^+ \bar{\Sigma}^-$	24.1 ± 0.7	10.61 ± 0.04	[JHEP11(2021)226]
	*=-=+	18.40 ± 0.04	10.40 ± 0.06	[PRD93(2016)072003]
	$\Xi^0 \overline{\Xi}^0$	14.05 ± 0.04	11.65 ± 0.04	[PLB770(2017)217]
	$\Lambda \overline{\Lambda}$	42.83 ± 0.34	3.97 ± 0.02	
	$\Sigma^0 \bar{\Sigma}^0$	14.79 ± 0.12	2.44 ± 0.03	[PRD95(2017)052003]
1.(DC)	$\Sigma^+ \bar{\Sigma}^-$	18.6 ± 0.5	2.52 ± 0.04	[JHEP11(2021)226]
$\psi(2S)$	*=-=+	18.04 ± 0.04	2.78 ± 0.05	[PRD93(2016)072003]
	$\Xi^0 \overline{\Xi}^0$	14.10 ± 0.04	2.73 ± 0.03	[PLB770(2017)217]
	$\Omega^- \bar{\Omega}^+$	17.1/18.9	0.59 ± 0.03	[PRL126(2021)092002]

numbers for $1.31 \cdot 10^9 J/\psi$ and $0.45 \cdot 10^9 \psi(2S)$

*numbers for $0.22 \cdot 10^9 J/\psi$ and $0.11 \cdot 10^9 \psi(2S)$

Introduction to CPV

- · Confirmed only in meson decays
- SM CPV is not sufficient to explain observed matter-antimatter asymmetry
- Baryogenesis requires C and CP violation in the processes

[PismaZh.Eksp.Teor.Fiz.5(1967)32]

• Systematical mapping with different hadronic systems and complementary methods are needed for understanding CPV in flavour sector

Ground-state strange baryons

- Spin- $\frac{1}{2}$ baryon octet
- Weak $\Delta S = 1$ transitions

+
$$\Omega^-$$
 spin- $\frac{3}{2}$

Hyperon	Mass [GeV/c ²]	Decay (\mathcal{B})
$\Lambda(uds)$	1.116	$\begin{array}{c} p\pi^{-}(64.1\%) \\ n\pi^{0}(35.9\%) \end{array}$
$\Sigma^{-}(dds)$	1.197	$n\pi^{-}(99.8\%)$
$\Sigma^+(uus)$	1.189	$p\pi^0(51.6\%)$ $n\pi^+(48.3\%)$
$\Xi^0(uss)$	1.315	$\Lambda \pi^{0}(99.5\%)$
$\Xi^{-}(dss)$	1.322	$\Lambda \pi^{-}(99.9\%)$
$\Omega^{-}(sss)$	1.672	$ \begin{array}{c} \Lambda K^{-}(67.8\%) \\ \Xi^{0}\pi^{-}(23.6\%) \\ \Xi^{-}\pi^{0}(8.6\%) \end{array} $

Modular method to study full process: $e^+e^- \rightarrow (c\bar{c}) \rightarrow Y\bar{Y} \rightarrow (BM)(\bar{B}\bar{M})$

Production process

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \bar{\nu}} C_{\mu \bar{\nu}} \sigma_{\mu}^{Y_1} \otimes \sigma_{\bar{\nu}}^{\bar{Y}_1}$$

• Spin $\frac{1}{2} + \frac{\overline{1}}{2}$ baryon-antibaryon density matrix:

Production process

 $\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu\bar{\nu}} C_{\mu\bar{\nu}} \sigma_{\mu}^{Y_1} \otimes \sigma_{\bar{\nu}}^{\bar{Y}_1}$ • Spin $\frac{1}{2} + \frac{\overline{1}}{2}$ baryon-antibaryon density matrix: Y_1 transverse polarization $C_{\mu\bar{\nu}} = \begin{pmatrix} 1 + \alpha_{\psi}\cos^{2}\theta & 0 & 0\\ 0 & \beta_{\psi}\sin\theta\cos\theta & 0\\ -\beta_{\psi}\sin\theta\cos\theta & 0 & 0\\ 0 & 0 & -\gamma_{\psi}\sin\theta\cos\theta & 0\\ 0 & -\gamma_{\psi}\sin\theta\cos\theta & 0 & -\alpha_{\psi}-\cos^{2}\theta \end{pmatrix}$ \bar{Y}_1 transverse polarization spin-correlation terms $\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi), \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$

Production process

$$PRD99(2019)056008$$

$$PRD99(2019)056008$$

$$PrD99(2019)056008$$

$$PrD9(2019)056008$$

$$PrD9(2019)056008$$

$$P_{1}/2,172 = \frac{1}{4}\sum_{\mu\bar{\nu}}C_{\mu\bar{\nu}}\sigma_{\mu}^{Y_{1}}\otimes\sigma_{\bar{\nu}}^{\bar{Y}_{1}}$$

$$P_{1/2,1/2} = \frac{1}{4}\sum_{\mu\bar{\nu}}C_{\mu\bar{\nu}}\sigma_{\mu}^{Y_{1}}\otimes\sigma_{\bar{\nu}}^{\bar{Y}_{1}}$$

$$P_{\mu\bar{\nu}} = \begin{pmatrix} 1+\alpha_{4\mu}\cos^{2}\theta & 0 & 0\\ -\beta_{4\nu}\sin\theta\cos\theta & 0 & -\alpha_{4\nu}-\cos^{2}\theta \\ 0 & 0 & -\gamma_{4\nu}\sin\theta\cos\theta & 0\\ -\gamma_{4\nu}\sin\theta\cos\theta & 0 & -\alpha_{4\nu}-\cos^{2}\theta \end{pmatrix}$$

$$P_{1} \text{ transverse polarization}$$

$$P_{\mu\bar{\nu}} = \sqrt{1-\alpha_{4\nu}^{2}}\sin(\Delta\Phi), \quad \gamma_{4\nu} = \sqrt{1-\alpha_{4\nu}^{2}}\cos(\Delta\Phi)$$

• Unpolarised e^+e^- beams \implies transverse polarisation (if $\Delta \Phi \neq 0$): $P_y(\cos \theta) = \frac{\sqrt{1 - \alpha_{\psi}^2} \cos \theta \sin \theta}{1 + \alpha_{\psi} \cos^2 \theta} \sin(\Delta \Phi)$

Varvara Batozskaya

CPV in hyperons at BESIII

Decay amplitudes in hyperon decays

• S- and P-wave amplitudes: $Y \to BM$ like $\Lambda \to p\pi^ Y_1 \to Y_2(\to BM)M$ like $\Xi^- \to \Lambda(\to p\pi^-)\pi^-$

$$\int \mathcal{A} = S + P\vec{\sigma} \cdot \hat{\mathbf{n}}$$

•
$$|\Delta I| = 1/2$$

• Contribution of $|\Delta I| = 3/2$ is $\sim 10\%$

$$S = |S| exp(\xi_S) exp(i\delta_S)$$
$$P = |P| exp(\xi_P) exp(i\delta_P)$$

strong phases

Decay amplitudes in hyperon decays

• S- and P-wave amplitudes: $Y \to BM$ like $\Lambda \to p\pi^ Y_1 \to Y_2(\to BM)M$ like $\Xi^- \to \Lambda(\to p\pi^-)\pi^-$

$$\mathbf{A} = S + P\vec{\sigma} \cdot \hat{\mathbf{n}}$$

BESII

•
$$|\Delta I| = 1/2$$

• Contribution of $|\Delta I|=3/2$ is $\sim 10\%$

$$S = |S| exp(\xi_S) exp(i\delta_S)$$
$$P = |P| exp(\xi_P) exp(i\delta_P)$$

weak CP add phases

strong phases

• Two measurable parameters

$$\boldsymbol{\alpha} = \frac{2\operatorname{Re}(S*P)}{|S|^2 + |P|^2}, \qquad \beta = \frac{2\operatorname{Im}(S*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} \sin \boldsymbol{\phi}$$

Measured hyperon decay parameters

• Polarisation of hyperons is experimentally accessible in weak parity-violating decays

• Example: angular distribution of $Y \to BM$

$$I(\cos\theta_B) \propto 1 + \alpha_B P_y \cos\theta_B$$

• Angle ϕ is accessible when polarisation of daughter baryon is measured

• Example: $Y_1 \to Y_2 (\to BM)M$ like $\Xi^- \to \Lambda (\to p\pi^-)\pi^-$

Varvara Batozskaya

BESI

Varvara Batozskaya

CPV in hyperons at BESIII

• HyperCP^[preliminary]: $A_{CP}^{\Lambda} + A_{CP}^{\Xi} = (-6.0 \pm 2.1_{\text{stat}} \pm 2.0_{\text{syst}}) \cdot 10^{-4}$ [BEACH2008] signal statistics increased by factor 6-7

• HyperCP: $A_{CP}^{\Lambda} + A_{CP}^{\Xi} = (0.0 \pm 5.1_{\text{stat}} \pm 4.4_{\text{syst}}) \cdot 10^{-4}$ [PRL93(2004)262001]

 $\Xi^- \rightarrow \Lambda \pi^ -2.1 \pm 1.7$

$$A_{CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}} = -\sin\phi \tan(\xi_P - \xi_S) \frac{\sqrt{1 - \alpha^2}}{\alpha}$$

$$\Phi_{CP} = \frac{\phi + \bar{\phi}}{2} = \cos\phi \tan(\xi_P - \xi_S) \frac{\alpha}{\sqrt{1 - \alpha^2}}$$

Decay
mode

$$\overline{\Lambda \to p\pi^-}$$

weak P-S phase difference

• If CP conserved: $\bar{\alpha} = -\alpha$, $\bar{\beta} = -\beta$, $\bar{\phi} = -\phi$

CP tests in hyperon decays

Possible CP tests:

 $\xi_P - \xi_S$ $[10^{-4} rad]$

 -0.2 ± 2.2

$$\begin{array}{c} -3 \cdot 10^{-5} \leq A_{\Lambda} \leq 3 \cdot 10^{-5} \\ 0.5 \cdot 10^{-5} \leq A_{\Xi} \leq 6 \cdot 10^{-5} \end{array}$$

mode

[PRD99(2019)056008] [PRD100(2019)114005]

Production matrix:

• Decay matrix:

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \bar{\nu}} C_{\mu \bar{\nu}} \sigma_{\mu}^{Y_1} \otimes \sigma_{\bar{\nu}}^{\bar{Y}_1}$$

$$\sigma_{\mu}^{Y_1} \to \sum_{\mu'=0}^{3} a_{\mu\mu'}^{Y_1}(\alpha_{Y_1}, \phi_{Y_1}; \theta_{Y_2}, \varphi_{Y_2}) \sigma_{\mu'}^{Y_2}$$

• Production matrix:

• Decay matrix:

[PRD99(2019)056008] [PRD100(2019)114005]

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu\bar{\nu}} C_{\mu\bar{\nu}} \sigma_{\mu}^{Y_1} \otimes \sigma_{\bar{\nu}}^{\bar{Y}_1}$$

$$\sigma_{\mu}^{Y_1} \to \sum_{\mu'=0}^{3} a_{\mu\mu'}^{Y_1}(\alpha_{Y_1}, \phi_{Y_1}; \theta_{Y_2}, \varphi_{Y_2}) \sigma_{\mu'}^{Y_2}$$

 Joint angular amplitude of full decay chain takes into account polarisation, entanglement and sequential decays

$$\mathcal{W}(\boldsymbol{\xi}, \boldsymbol{\omega}) = \sum_{\mu, \bar{\nu} = 0}^{3} \underbrace{C_{\mu \bar{\nu}}}_{\mu', \bar{\nu}' = 0} \sum_{\mu', \bar{\nu}' = 0}^{3} \underbrace{a_{\mu\mu'}^{Y_1} a_{\bar{\nu}\bar{\nu}'}^{\bar{Y}_1} a_{\mu'0}^{\bar{Y}_2} a_{\bar{\nu}'0}^{\bar{Y}_2}}_{\boldsymbol{\xi} = (\theta_{Y_1}, \theta_{Y_2}, \varphi_{Y_2}, \bar{\theta}_{Y_2}, \varphi_{Y_2}, \theta_B, \varphi_B, \bar{\theta}_B, \bar{\varphi}_B) \text{ - set of helicity angles}}$$

 $\boldsymbol{\xi} = (\theta_{Y_1}, \theta_{Y_2}, \varphi_{Y_2}, \theta_{Y_2}, \varphi_{Y_2}, \theta_B, \varphi_B, \theta_B, \varphi_B) - \text{set of neuclity angles}$ $\boldsymbol{\omega} = (\alpha_{\psi}, \Delta \Phi, \alpha_{Y_1}, \phi_{Y_1}, \bar{\alpha}_{Y_1}, \bar{\phi}_{Y_1}, \alpha_{Y_2}, \bar{\alpha}_{Y_2}) - \text{set of measured parameters}$

[PRD99(2019)056008] [PRD100(2019)114005]

 $\sigma_{\mu}^{Y_{1}} \to \sum_{\mu'=0}^{\circ} a_{\mu\mu'}^{Y_{1}}(\alpha_{Y_{1}}, \phi_{Y_{1}}; \theta_{Y_{2}}, \varphi_{Y_{2}}) \sigma_{\mu'}^{Y_{2}}$

Production matrix:

 $\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu\bar{\nu}} C_{\mu\bar{\nu}} \sigma_{\mu}^{Y_1} \otimes \sigma_{\bar{\nu}}^{\bar{Y}_1}$

$$\begin{aligned} \mathcal{W}(\boldsymbol{\xi},\boldsymbol{\omega}) &= \sum_{\mu,\bar{\nu}=0}^{3} \underbrace{C_{\mu\bar{\nu}}}_{\mu',\bar{\nu}'=0} \sum_{\mu',\bar{\nu}'=0}^{3} a_{\mu\mu'}^{Y_{1}} a_{\bar{\nu}\bar{\nu}'}^{\bar{Y}_{1}} a_{\mu'0}^{Y_{2}} a_{\bar{\nu}'0}^{\bar{Y}_{2}} \\ \boldsymbol{\xi} &= \underbrace{\theta_{Y_{1}}}_{\phi_{Y_{2}},\varphi_{Y_{2}},\bar{\theta}_{Y_{2}},\bar{\varphi}_{Y_{2}}}_{\varphi_{Y_{2}},\bar{\varphi}_{Y_{2}}} \underbrace{\theta_{B},\varphi_{B},\bar{\theta}_{B},\bar{\varphi}_{B}}_{\varphi_{B},\bar{\varphi}_{B}} \right) \text{ - set of helicity angles } \\ \boldsymbol{\omega} &= \underbrace{\alpha_{\psi},\Delta\Phi}_{\alpha_{Y_{1}},\phi_{Y_{1}},\bar{\alpha}_{Y_{1}},\bar{\phi}_{Y_{1}},\underline{\alpha}_{Y_{2}},\bar{\alpha}_{Y_{2}}}_{\varphi_{Y_{2}},\bar{\alpha}_{Y_{2}}} \text{ - set of measured parameters } \end{aligned}$$

•
$$e^+e^- \to (c\bar{c}) \to Y\bar{Y} \to (BM)(\bar{B}\bar{M})$$

• $\xi = 5$ angles $\omega = 4$ parameter

[PRD99(2019)056008] [PRD100(2019)114005]

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu\bar{\nu}} C_{\mu\bar{\nu}} \sigma_{\mu}^{Y_1} \otimes \sigma_{\bar{\nu}}^{Y_1}$$

$$\sigma_{\mu}^{Y_1} \to \sum_{\mu'=0}^{3} a_{\mu\mu'}^{Y_1}(\alpha_{Y_1}, \phi_{Y_1}; \theta_{Y_2}, \varphi_{Y_2}) \sigma_{\mu'}^{Y_2}$$

1

$$\mathcal{W}(\boldsymbol{\xi}, \boldsymbol{\omega}) = \sum_{\mu, \bar{\nu} = 0}^{3} C_{\mu \bar{\nu}} \sum_{\mu', \bar{\nu}' = 0}^{3} \overline{a_{\mu \mu'}^{Y_1} a_{\bar{\nu} \bar{\nu}'}^{Y_1}} a_{\mu' 0}^{Y_2} a_{\bar{\nu}' 0}^{\bar{Y}_2}$$

$$\boldsymbol{\xi} = \underbrace{\theta_{Y_1} \theta_{Y_2}, \varphi_{Y_2}, \bar{\theta}_{Y_2}, \bar{\varphi}_{Y_2}}_{(\bar{\theta}_{Y_1}, \bar{\varphi}_{Y_1}, \bar{\varphi}_{Y_1}, \bar{\varphi}_{Y_1}, \bar{\varphi}_{Y_2}, \bar{\varphi}_{Y_2}} = \mathbf{0}$$

$$\mathbf{\xi} = \underbrace{\theta_{Y_1} \theta_{Y_2}, \varphi_{Y_2}, \bar{\theta}_{Y_2}, \bar{\varphi}_{Y_2}}_{(\bar{\theta}_{Y_1}, \bar{\phi}_{Y_1}, \bar{\phi}_{Y_1}, \bar{\phi}_{Y_1}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}} = \mathbf{0}$$

$$\mathbf{\xi} = \underbrace{\theta_{Y_1} \theta_{Y_2}, \varphi_{Y_2}, \bar{\theta}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}}_{(\bar{\theta}_{Y_1}, \bar{\phi}_{Y_1}, \bar{\phi}_{Y_1}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}}_{(\bar{\theta}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}}_{(\bar{\theta}_{Y_1}, \bar{\phi}_{Y_1}, \bar{\phi}_{Y_1}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}}_{(\bar{\theta}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}}_{(\bar{\theta}_{Y_1}, \bar{\phi}_{Y_1}, \bar{\phi}_{Y_1}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}}_{(\bar{\theta}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}}_{(\bar{\theta}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}}_{(\bar{\theta}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}}_{(\bar{\theta}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}}_{(\bar{\theta}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2}}_{(\bar{\theta}_{Y_2}, \bar{\phi}_{Y_2}, \bar{\phi}_{Y_2},$$

•
$$e^+e^- \rightarrow (c\bar{c}) \rightarrow Y\bar{Y} \rightarrow (BM)(\bar{B}\bar{M})$$

• $\boldsymbol{\xi} = 5$ angles, $\boldsymbol{\omega} = 4$ parameters
• $e^+e^- \rightarrow (c\bar{c}) \rightarrow Y_1\bar{Y}_1 \rightarrow (Y_2M_1)(\bar{Y}_2\bar{M}_1) \rightarrow (BM_2M_1)(\bar{B}\bar{M}_2\bar{M}_1)$
• $\boldsymbol{\xi} = 9$ angles, $\boldsymbol{\omega} = 8$ parameters

Varvara Batozskaya

CPV in hyperons at BESIII

Experimental results: $e^+e^- \rightarrow Y\bar{Y} \rightarrow (BM)(\bar{B}\bar{M})$

$e^+e^- \rightarrow J/\psi \rightarrow \Lambda \bar{\Lambda}, \Lambda \rightarrow p\pi^- + \text{c.c.} (1)$

• Increasing data statistics have allowed for the significant result improvement ($\sim 3\sigma$): ¹[Nature Phys.15(2019)631] \implies ²[PRL129(2022)131801]

	This work ²	Previous work ¹
$N_{J/\psi}$	10 ¹⁰	$1.31 \cdot 10^{9}$
Nsig	$3.2 \cdot 10^{6}$	$421 \cdot 10^{3}$
$N_{\rm bkg}$	3801 ± 63	399 ± 20

• Angular dependence of the moment for the acceptance-corrected data:

$$\mu(\cos\theta_{\Lambda}) = \frac{\alpha_{\Lambda} - \bar{\alpha}_{\Lambda}}{2} \frac{1 + \alpha_{\psi} \cos^2\theta_{\Lambda}}{3 + \alpha_{\psi}} P_y(\cos\theta_{\Lambda})$$

Parameters	This work ²	Previous results ¹
α_ψ	$0.4748 \pm 0.0022 \pm 0.0024$	$0.461 \pm 0.006 \pm 0.007$
$\Delta \Phi$ [rad]	$0.7521 \pm 0.0042 \pm 0.0080$	$0.740 \pm 0.010 \pm 0.009$
$lpha_{\Lambda}$	$0.7519 \pm 0.0036 \pm 0.0019$	$0.750 \pm 0.009 \pm 0.004$
$ar{lpha}_{oldsymbol{\Lambda}}$	$-0.7559 \pm 0.0036 \pm 0.0029$	$-0.758 \pm 0.010 \pm 0.007$

₩SII 🥌

$$e^+e^- \rightarrow J/\psi \rightarrow \Lambda \bar{\Lambda}, \Lambda \rightarrow p\pi^- + \text{c.c.}$$
 (2)

[PRL129(2022)131801]

$$A_{\rm CP}^{\Lambda} = \frac{\alpha_{\Lambda} + \bar{\alpha}_{\Lambda}}{\alpha_{\Lambda} - \bar{\alpha}_{\Lambda}} = -0.0025 \pm 0.0046_{\rm stat} \pm 0.0011_{\rm syst}$$

• BESIII: $A_{CP}^{\Lambda} = -0.006 \pm 0.012_{stat} \pm 0.007_{syst}$ [Nature Phys.15(2019)631] • PS185: $A_{CP}^{\Lambda} = 0.013 \pm 0.021_{tot}$ [PRC54(1996)1877]

$$\langle \alpha_{\Lambda} \rangle = \frac{\alpha_{\Lambda} - \bar{\alpha}_{\Lambda}}{2} = 0.7542 \pm 0.0010_{\text{stat}} \pm 0.0020_{\text{syst}}$$

• BESIII: $\langle \alpha_{\Lambda} \rangle = 0.754 \pm 0.003_{\text{stat}} \pm 0.002_{\text{syst}}$ [Nature Phys.15(2019)631]

• CLAS: $\alpha_{\Lambda} = 0.721 \pm 0.006_{\text{stat}} \pm 0.005_{\text{syst}}$ [PRL123(2019)182301]

Varvara Batozskaya

³[PRD67(2003)056001]

E.	$A^0_{\rm CP}$	$-0.004 \pm 0.037 \pm 0.010$	$3.6 \cdot 10^{-6} (SM^3)$
in the second second	$A_{\rm CP}^{\downarrow\uparrow}$	$3.9 \cdot 10^{-4} \; (SM^3)$	$-0.080\pm0.052\pm0.028$
-		•	•

Experimental results: $e^+e^- \rightarrow Y_1\bar{Y_1} \rightarrow (Y_2M_1)(\bar{Y_2}\bar{M_1}) \rightarrow (BM_2M_1)(\bar{B}\bar{M_2}\bar{M_1})$

[Nature 606(2022)64]

Varvara Batozskaya

CPV in hyperons at BESIII

26/09/24, FAIRNESS2024 23/27

$e^+e^- \to J/\psi \to \Xi^- \bar{\Xi}^+, \ \Xi^- \to \Lambda(\to p\pi^-)\pi^- + \text{c.c.}$ (2)

[Nature 606(2022)64] Previous result 0 0.58±0.04±0.08

α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$	[1]
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	-	
α_{Ξ}	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010	[2]
φ_Ξ	$0.011 \pm 0.019 \pm 0.009~\text{rad}$	-0.037 ± 0.014 rad	[2]
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$	-	
$\overline{\varphi}_{\Xi}$	$-0.021\pm0.019\pm0.007~\text{rad}$	-	
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.7519 {\pm} 0.0036 {\pm} 0$.0019[3]
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	$-0.7559 {\pm} 0.0036 {\pm} 0$.0029 [3]
$\xi_P - \xi_S$	$(1.2\pm3.4\pm0.8)\times10^{-2}~{\rm rad}$	-	
$\delta_P - \delta_S$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~{\rm rad}$	$(10.2\pm 3.9)\times 10^{-2}$	rad [4]
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6)\times10^{-3}$	-	
$\Delta\phi^{\Xi}_{\rm CP}$	$(-4.8\pm13.7\pm2.9)\times10^{-3}~rad$	-	
$A^{\Lambda}_{\rm CP}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-2.5 \pm 4.6 \pm 1.1) >$	< 10 ⁻³ [3]
$\langle \phi_{\Xi} \rangle$	$0.016 \pm 0.014 \pm 0.007$ rad		

This work

 First measurement of [−] polarisation at e⁺e[−] collider

¹[PRD93(2016)072003] ²[PTEP2020(2020)083C01] ³[PRL129(2022)131801] ⁴[PRL93(2004)011802]

Parameter

$e^+e^- \to J/\psi \to \Xi^- \bar{\Xi}^+, \ \Xi^- \to \Lambda(\to p\pi^-)\pi^- + \text{c.c.}$ (2)

[Nature 606(2022)64]

- First measurement of Ξ[−] polarisation at e⁺e[−] collider
- First direct determination of all Ξ⁻Ξ⁺ decay parameters

Parameter	This work	Previous result
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$ [1]
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	-
α_{Ξ}	$-0.376 \pm 0.007 \pm 0.003$	-0.401±0.010 [2]
φΞ	$0.011 \pm 0.019 \pm 0.009~\text{rad}$	-0.037 ± 0.014 rad [2]
$\overline{\alpha}_\Xi$	$0.371 \pm 0.007 \pm 0.002$	-
$\overline{\phi}_{\Xi}$	$-0.021 \pm 0.019 \pm 0.007$ rad	-
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	0.7519±0.0036±0.0019[3]
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	-0.7559±0.0036±0.0029[3]
$\xi_P - \xi_S$	$(1.2\pm3.4\pm0.8)\times10^{-2}~{\rm rad}$	-
$\delta_P - \delta_S$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~{\rm rad}$	$(10.2 \pm 3.9) \times 10^{-2}$ rad [4]
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6)\times10^{-3}$	-
$\Delta\phi^{\Xi}_{\rm CP}$	$(-4.8\pm13.7\pm2.9)\times10^{-3}~rad$	-
$A^{\Lambda}_{\rm CP}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-2.5\pm4.6\pm1.1)\!\times10^{-3}\text{[3]}$
$\left< \varphi_\Xi \right>$	$0.016 \pm 0.014 \pm 0.007$ rad	

¹[PRD93(2016)072003] ²[PTEP2020(2020)083C01] ³[PRL129(2022)131801] ⁴[PRL93(2004)011802]

[Nature 606(2022)64]

- First measurement of [−] polarisation at e⁺e[−] collider
- First direct determination of all Ξ⁻Ξ⁺ decay parameters
- Independent measurement of Λ decay parameters
 - Excellent agreement with previous BESIII results

Parameter	This work	Previous result	
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$ [1]
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	-	
α_{Ξ}	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010 [2	1
φ_{Ξ}	$0.011 \pm 0.019 \pm 0.009~rad$	-0.037 ± 0.014 rad [2]
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$	-	
$\overline{\phi}_{\Xi}$	$-0.021 \pm 0.019 \pm 0.007$ rad	-	
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.7519 \pm 0.0036 \pm 0.0019$ [3]
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	-0.7559±0.0036±0.0029[3]
$\xi_P - \xi_S$	$(1.2\pm3.4\pm0.8)\times10^{-2}~{\rm rad}$	_	=
$\delta_P - \delta_S$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~{\rm rad}$	$(10.2 \pm 3.9) \times 10^{-2}$ rad [4	1
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6)\times10^{-3}$	-	-
$\Delta \phi_{\mathrm{CP}}^{\Xi}$	$(-4.8\pm13.7\pm2.9)\times10^{-3}~rad$	-	
$A^{\Lambda}_{\rm CP}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-2.5\pm4.6\pm1.1)\!\times10^{-3}\text{[3]}$	1
$\left< \varphi_{\Xi} \right>$	$0.016 \pm 0.014 \pm 0.007~{\rm rad}$		_

¹[PRD93(2016)072003] ²[PTEP2020(2020)083C01] ³[PRL129(2022)131801] ⁴[PRL93(2004)011802]

[Nature 606(2022)64]

- First measurement of Ξ^- polarisation at e^+e^- collider
- First direct determination of all Ξ⁻Ξ⁺ decay parameters
- Independent measurement of Λ decay parameters
 - Excellent agreement with previous BESIII results
- Two independent CP tests

Parameter	This work	Previous result	
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$	[1]
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	-	
α_{Ξ}	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010	[2]
φ_Ξ	$0.011 \pm 0.019 \pm 0.009~\text{rad}$	-0.037 ± 0.014 rad	[2]
$\overline{\alpha}_\Xi$	$0.371 \pm 0.007 \pm 0.002$	-	
$\overline{\phi}_{\Xi}$	$-0.021 \pm 0.019 \pm 0.007$ rad	-	
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.7519 {\pm} 0.0036 {\pm} 0.0019$	[3]
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	$-0.7559 {\pm} 0.0036 {\pm} 0.0029$	[3]
$\xi_P - \xi_S$	$(1.2\pm3.4\pm0.8)\times10^{-2}~{\rm rad}$	_	
$\delta_P - \delta_S$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~\rm{rad}$	$(10.2\pm 3.9)\times 10^{-2}~{\rm rad}$	[4]
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6) imes10^{-3}$	-	
$\Delta \phi_{\mathrm{CP}}^{\Xi}$	$(-4.8\pm13.7\pm2.9)\times10^{-3}~rad$	-	
$A^{\Lambda}_{\mathrm{CP}}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-2.5\pm4.6\pm1.1)\times10^{-3}$	[3]
$\langle \phi_\Xi \rangle$	$0.016 \pm 0.014 \pm 0.007~rad$		

¹[PRD93(2016)072003] ²[PTEP2020(2020)083C01] ³[PRL129(2022)131801] ⁴[PRL93(2004)011802]

[Nature 606(2022)64]

- First measurement of = polarisation at $e^+e^$ collider
- First direct determination of all Ξ⁻Ξ⁺ decay parameters
- Independent measurement of Λ decay parameters
 - Excellent agreement with previous BESIII results
- Two independent CP tests
- First measurement of weak phase difference $(\xi_P - \xi_S)_{SM} = (-2.1 \pm 1.7) \cdot 10^{-4}$ rad [PRD105(2022)116022]

Parameter	This work	Previous result
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$ [1]
ΔΦ	$1.213 \pm 0.046 \pm 0.016$ rad	-
α_{Ξ}	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010 [2]
φ_{Ξ}	$0.011 \pm 0.019 \pm 0.009~rad$	-0.037 ± 0.014 rad [2]
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$	-
$\overline{\phi}_{\Xi}$	$-0.021 \pm 0.019 \pm 0.007$ rad	-
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	0.7519±0.0036±0.0019[3]
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	-0.7559±0.0036±0.0029[3]
$\xi_P - \xi_S$	$(1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad	-
$\delta_P - \delta_S$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~{\rm rad}$	$(10.2 \pm 3.9) \times 10^{-2} \text{ rad}$ [4]
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6) imes10^{-3}$	-
$\Delta \phi_{\mathrm{CP}}^{\Xi}$	$(-4.8\pm13.7\pm2.9)\times10^{-3}~rad$	-
$A^{\Lambda}_{\mathrm{CP}}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-2.5 \pm 4.6 \pm 1.1) \times 10^{-3}$ [3]
$\left< \varphi_\Xi \right>$	$0.016 \pm 0.014 \pm 0.007~{\rm rad}$	

 $^{1} [\mathsf{PRD93}(2016)072003] \ ^{2} [\mathsf{PTEP2020}(2020)083\text{C01}] \ ^{3} [\mathsf{PRL129}(2022)131801] \ ^{4} [\mathsf{PRL93}(2004)011802]$

💦 🥥 🕅

[Nature 606(2022)64]

- First measurement of Ξ^- polarisation at e^+e^- collider
- First direct determination of all Ξ⁻Ξ⁺ decay parameters
- Independent measurement of Λ decay parameters
 - Excellent agreement with previous BESIII results
- Two independent CP tests
- First measurement of weak phase difference

 $(\xi_P - \xi_S)_{SM} = (-2.1 \pm 1.7) \cdot 10^{-4} \text{ rad}$ [PRD105(2022)116022]

Parameter	This work	Previous result
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	-
α_{Ξ}	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010
φ_{Ξ}	$0.011 \pm 0.019 \pm 0.009~rad$	-0.037 ± 0.014 rad
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$	-
$\overline{\phi}_{\Xi}$	$-0.021 \pm 0.019 \pm 0.007$ rad	-
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.7519 \pm 0.0036 \pm 0.0019$
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	$-0.7559 \pm 0.0036 \pm 0.0029$
$\xi_P - \xi_S$	$(1.2\pm3.4\pm0.8)\times10^{-2}$ rad	-
$\delta_P - \delta_S$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~{\rm rad}$	$(10.2 \pm 3.9) \times 10^{-2}$ rad [
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6)\times10^{-3}$	-
$\Delta \phi_{\mathrm{CP}}^{\Xi}$	$(-4.8 \pm 13.7 \pm 2.9) \times 10^{-3}$ rad	l –
$A^{\Lambda}_{\mathrm{CP}}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-2.5 \pm 4.6 \pm 1.1) \times 10^{-3}$
$\langle \phi_{\Xi} \rangle$	$0.016 \pm 0.014 \pm 0.007$ rad	

¹[PRD93(2016)072003] ²[PTEP2020(2020)083C01] ³[PRL129(2022)131801] ⁴[PRL93(2004)011802]

- Study of $e^+e^- \rightarrow J/\psi \rightarrow \Xi^0 \bar{\Xi}^0$, $\Xi^0 \rightarrow \Lambda (\rightarrow p\pi^-)\pi^0 + \text{c.c.}$ [PRD108(2023)L031106]
 - Data sample: $10^{10} J/\psi$
 - + First measurement of Ξ^0 polarization: $\Delta \Phi = 1.168 \pm 0.019 \pm 0.018$
 - Improved result of weak phase difference: $(0.0\pm1.7\pm0.2)\times10^{-2}$

Varvara Batozskaya

CPV in hyperons at **BESIII**

26/09/24, FAIRNESS2024 24/27

Varvara Batozskava

CPV in hyperons at BESIII

26/09/24, FAIRNESS2024 25 / 27

$lpha_0/lpha$	$0.877 \pm 0.015^{+0.014}_{-0.010}$	1.01 ± 0.07 [1]
$ar{lpha}_0/lpha_+$	$0.863 \pm 0.014^{+0.012}_{-0.008}$	$0.913 \pm 0.028 \pm 0.012$ [2]

This work

¹[PTEP2022(2022)083C01] ²[Nature Phys.15(2019)631] ³[PRL129(2022)131801]

$$e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\bar{\Xi}^+ \rightarrow (\Lambda(p\pi^-)\pi^-)(\bar{\Lambda}(\bar{n}\pi^0)\pi^+) + \text{c.c.}$$
 (1)

• Data sample:
$$10^{10}J/\psi$$

- $144 \cdot 10^3$ and $123 \cdot 10^3$ events for $(p2\pi^-)(\bar{n}\pi^0\pi^+)$ and $(n\pi^0\pi^-)(\bar{p}2\pi^+)$, respectively
- Result is consistent with $\Xi^- \bar{\Xi}^+ \rightarrow (p2\pi^-)(\bar{p}2\pi^+)$ [Nature 606(2022)64]

Parameters

Previous result

$e^+e^- \to J/\psi, \psi(2S) \to \Sigma^0 \bar{\Sigma}^0 \to (\Lambda \gamma)(\bar{\Lambda} \gamma)$

Da	nta sa	mple:
----	--------	-------

- $10^{10} J/\psi$ with N_{sig} $\sim 1.1\cdot 10^6$
- $2.7\cdot 10^9 \psi(2S)$ with ${\rm N}_{\rm sig}\sim 52\cdot 10^3$

	Parameters	This work	Previous result ¹
	$lpha_{J/\psi}$	$-0.4133 \pm 0.0035 \pm 0.0077$	-0.449 ± 0.022
Sul	$\Delta \Phi_{{ m J}/\psi}$ [rad]	$-0.0828 \pm 0.0068 \pm 0.0033$	-
5	$lpha_{\psi(2S)}$	$\bf 0.814 \pm 0.028 \pm 0.028$	0.71 ± 0.12
12° 🛫	$\Delta \Phi_{oldsymbol{\psi}(\mathbf{2S})}$ [rad]	$\bf 0.512 \pm 0.085 \pm 0.034$	-
es.	$lpha_{\Sigma^0}$	$-0.0017 \pm 0.0021 \pm 0.0018$	_
E	$ar{lpha}_{\Sigma^0}$	$0.0021 \pm 0.0020 \pm 0.0022$	-

¹[PRD95(2017)052003]

\mathbf{v}	่วท	/21	· >	R	a .	to	76	kai	/2
	a	, ai	u	-	•	-0	23	Nu -	yu

Varvara Batozskaya

CPV in hyperons at **BESIII**

26/09/24, FAIRNESS2024 26/27

- BESIII has performed
 - Measurements of polarisation and spin correlations
 - * $\Lambda\bar{\Lambda}, \Sigma^0\bar{\Sigma}^0, \Sigma^+\bar{\Sigma}^-, \Xi^0\bar{\Xi}^0, \Xi^+\bar{\Xi}^$ using partial and full J/ψ and $\psi(2S)$ statistics
 - Determination of hyperon and antihyperon decay parameters
 - CP tests comparing hyperon and antihyperon
 - * Separation of strong and weak decay phases \implies more sensitive CP tests

- BESIII has performed
 - Measurements of polarisation and spin correlations
 - * $\Lambda\bar{\Lambda}, \Sigma^0\bar{\Sigma}^0, \Sigma^+\bar{\Sigma}^-, \Xi^0\bar{\Xi}^0, \Xi^+\bar{\Xi}^$ using partial and full J/ψ and $\psi(2S)$ statistics
 - Determination of hyperon and antihyperon decay parameters
 - CP tests comparing hyperon and antihyperon
 - * Separation of strong and weak decay phases \implies more sensitive CP tests

• Future prospects with BESIII

- More interesting results are coming using full collected statistics: $10^{10}~J/\psi$ and $3\cdot 10^9~\psi(2S)$
- BEPCII upgrade in 2024-25 with increasing $E_{ee} \in (4...5)$ GeV

- BESIII has performed
 - Measurements of polarisation and spin correlations
 - * $\Lambda\bar{\Lambda}, \Sigma^0\bar{\Sigma}^0, \Sigma^+\bar{\Sigma}^-, \Xi^0\bar{\Xi}^0, \Xi^+\bar{\Xi}^$ using partial and full J/ψ and $\psi(2S)$ statistics
 - Determination of hyperon and antihyperon decay parameters
 - CP tests comparing hyperon and antihyperon
 - * Separation of strong and weak decay phases \implies more sensitive CP tests
 - Future prospects with BESIII
 - More interesting results are coming using full collected statistics: $10^{10}~J/\psi$ and $3\cdot10^9~\psi(2S)$
 - BEPCII upgrade in 2024-25 with increasing $E_{ee} \in (4...5)$ GeV
 - Longer time scale prospects with STCF [FrontPhys(Beijing)19(2024)14701] [PRD105(2022)116022]
 - * Planning produce more than $10^{12}~J/\psi$ events
 - * Polarized electron beam
 - * Statistical precision will be comparable to the SM predictions

- BESIII has performed
 - Measurements of polarisation and spin correlations
 - * $\Lambda\bar{\Lambda}, \Sigma^0\bar{\Sigma}^0, \Sigma^+\bar{\Sigma}^-, \Xi^0\bar{\Xi}^0, \Xi^+\bar{\Xi}^$ using partial and full J/ψ and $\psi(2S)$ statistics
 - Determination of hyperon and antihyperon decay parameters
 - CP tests comparing hyperon and antihyperon
 - * Separation of strong and weak decay phases \implies more sensitive CP tests
 - Future prospects with BESIII
 - More interesting results are coming using full collected statistics: $10^{10}~J/\psi$ and $3\cdot 10^9~\psi(2S)$
 - BEPCII upgrade in 2024-25 with increasing $E_{ee} \in (4...5)$ GeV
 - Longer time scale prospects with STCF [FrontPhys(Beijing)19(2024)14701] [PRD105(2022)116022]
 - * Planning produce more than $10^{12}~J/\psi$ events
 - * Polarized electron beam
 - * Statistical precision will be comparable to the SM predictions

Stay tuned!

Besii 🥌 🕸

Backups

" I ALWAYS BACK UP EVERYTHING."

Complementarity of hyperon and kaon decays

$$(\boldsymbol{\xi}_P - \boldsymbol{\xi}_S)_{\text{BSM}} = \frac{C'_B}{B_G} \left(\frac{\epsilon'}{\epsilon}\right)_{\text{BSM}} + \frac{C_B}{\kappa} \epsilon_{\text{BSM}}$$

[PRD69(2004)076008]

BSM predictions [PRD105(2022)116022]

$$|A_{\Lambda} + A_{\Xi}| \le 11 \cdot 10^{-4}$$

Decay	$ \xi_P - \xi_S $	C_B	C'_B
mode	[rad]		
$\Lambda \to p\pi^-$	$\leq 5.3 \cdot 10^{-3}$	0.9 ± 1.8	0.4 ± 0.9
$\Xi^- \to \Lambda \pi^-$	$\leq 3.7 \cdot 10^{-3}$	-0.5 ± 1.0	0.4 ± 0.7

with $0.5 < B_G < 2$ and $0.2 < |\kappa| < 1$ [PRD61(2000)071701] $|\epsilon'/\epsilon|_{\rm BSM} \leq 1\cdot 10^{-3}$ and $|\epsilon|_{\rm BSM} \leq 2\cdot 10^{-4}$ [JHEP12(2020)097]

Varvara Batozskaya

CPV in hyperons at BESIII

$$e^+e^- \to J/\psi \to \Sigma^+ \bar{\Sigma}^- \to (p\gamma)(\bar{p}\pi^0) + \text{c.c.}$$

[PRL130(2023)211901]

• Data sample: $10^{10} J/\psi$

• 1189 ± 38 and 1306 ± 39 events for $(p\gamma)(\bar{p}\pi^0)$ and $(p\pi^0)(\bar{p}\gamma)$, respectively

 $\mathcal{B} = (0.996 \pm 0.021 \pm 0.018) \cdot 10^{-3}$ $\langle \alpha_{\gamma} \rangle = -0.651 \pm 0.056 \pm 0.020$

$$\Delta_{\rm CP} = \frac{\underline{\mathcal{B}} - \underline{\mathcal{B}}}{\underline{\mathcal{B}} + \underline{\mathcal{B}}} = 0.006 \pm 0.011 \pm 0.004$$
$$A_{\rm CP} = \frac{\bar{\alpha}_{\gamma} + \alpha_{\gamma}}{\bar{\alpha}_{\gamma} - \alpha_{\gamma}} = 0.095 \pm 0.087 \pm 0.018$$

Varvara Batozskaya

CPV in hyperons at BESIII

$e^+e^- \to J/\psi \to \Xi^0 \bar{\Xi}^0$, $\Xi^0 \to \Lambda (\to p\pi^-)\pi^0 + {\rm c.c.}$

[PRD108(2023)L031106]

Parameter	This work	Previous result	
$\alpha_{J/\psi}$	$0.514 \pm 0.006 \pm 0.015$	0.66 ± 0.06	[1]
$\Delta \Phi(\text{rad})$	$1.168 \pm 0.019 \pm 0.018$	-	
α_{Ξ}	$-0.3750 \pm 0.0034 \pm 0.0016$	-0.358 ± 0.044	[2]
$\bar{\alpha}_{\Xi}$	$0.3790 \pm 0.0034 \pm 0.0021$	0.363 ± 0.043	[2]
$\phi_{\Xi}(\mathrm{rad})$	$0.0051 \pm 0.0096 \pm 0.0018$	0.03 ± 0.12	[2]
$\bar{\phi}_{\Xi}(rad)$	$-0.0053 \pm 0.0097 \pm 0.0019$	-0.19 ± 0.13	[2]
α_{Λ}	$0.7551 \pm 0.0052 \pm 0.0023$	0.7519 ± 0.0043	[3]
$\bar{\alpha}_{\Lambda}$	$-0.7448 \pm 0.0052 \pm 0.0017$	-0.7559 ± 0.0047	[3]
$\xi_P - \xi_S(\text{rad})$	$(0.0 \pm 1.7 \pm 0.2) \times 10^{-2}$	-	
$\delta_P - \delta_S(\text{rad})$	$(-1.3 \pm 1.7 \pm 0.4) \times 10^{-2}$	-	
A_{CP}^{Ξ}	$(-5.4 \pm 6.5 \pm 3.1) \times 10^{-3})$	$(-0.7 \pm 8.5) \times 10^{-2}$	[2]
$\Delta \phi_{CP}^{\Xi}(\mathrm{rad})$	$(-0.1 \pm 6.9 \pm 0.9) \times 10^{-3}$	$(-7.9 \pm 8.3) \times 10^{-2}$	[2]
A^{Λ}_{CP}	$(6.9 \pm 5.8 \pm 1.8) \times 10^{-3}$	$(-2.5 \pm 4.8) \times 10^{-3}$	[3]
$\langle \alpha_{\Xi} \rangle$	$-0.3770 \pm 0.0024 \pm 0.0014$	-	
$\langle \phi_{\Xi} \rangle$ (rad)	$0.0052 \pm 0.0069 \pm 0.0016$	-	
$\langle \alpha_{\Lambda} \rangle$	$0.7499 \pm 0.0029 \pm 0.0013$	0.7542 ± 0.0026	[3]

- $\bullet~$ Data sample: $10^{10}J/\psi$
- $3.3 \cdot 10^5$ events with 2% bkg
- First measurement of Ξ^0 polarisation
- Improved measurement:
 - All $\Xi^0 \overline{\Xi}^0$ decay parameters
 - Weak phase difference
 - Two independent CP tests

¹[PLB770(2017)217] ³[PRL129(2022)131801]

 $^{2}[\text{PRD108(2023)L011101}] \ \psi(2S) \rightarrow \Xi^{0} \bar{\Xi}^{0}, \ 0.45 \cdot 10^{9} \psi(2S), \ \mathbf{N}_{sig} \sim 2 \cdot 10^{3} \ \text{with} \ 1.2\% \ \text{bkg}$

Varvara Batozskaya

CPV in hyperons at BESIII

26/09/24, FAIRNESS2024 31/27

$e^+e^- \rightarrow J/\psi \rightarrow \Xi^- \bar{\Xi}^+ \rightarrow (\Lambda(p\pi^-)\pi^-)(\bar{\Lambda}(\bar{n}\pi^0)\pi^+) + \text{c.c.}$ (2)

[PRL132(2024)101801]

- If CP is conserved, $\alpha_{-}\alpha_{\Xi} = \alpha_{+}\bar{\alpha}_{\Xi}$ and $R(\cos \theta_{i}, \cos \theta_{\bar{i}}) = \frac{1+\alpha_{-}\alpha_{\Xi}\cos \theta_{i}}{1+\alpha_{+}\alpha_{\Xi}\cos \theta_{\bar{i}}}$ with $i = \{p, n\}$ are flat and equal to unity
- If no $\Delta I = 3/2$ transition in Λ decay, $\alpha_{-} = \alpha_{0}$ and $R(\cos \theta_{\vec{n}}, \cos \theta_{\vec{p}}) = \frac{1 + \vec{\alpha}_{0} \vec{\alpha}_{\Xi} \cos \theta_{\vec{n}}}{1 + \vec{\alpha}_{-} \vec{\alpha}_{\Xi} \cos \theta_{\vec{p}}}$ are flat and equal to unity

$e^+e^- \rightarrow J/\psi \rightarrow \Xi^- \bar{\Xi}^+ \rightarrow (\Lambda(p\pi^-)\pi^-)(\bar{\Lambda}(\bar{n}\pi^0)\pi^+) + \text{c.c.}$ (2)

[PRL132(2024)101801]

- If CP is conserved, $\alpha_{-}\alpha_{\Xi} = \alpha_{+}\bar{\alpha}_{\Xi}$ and $R(\cos \theta_{i}, \cos \theta_{\bar{i}}) = \frac{1+\alpha_{-}\alpha_{\Xi}\cos \theta_{i}}{1+\alpha_{+}\alpha_{\Xi}\cos \theta_{\bar{i}}}$ with $i = \{p, n\}$ are flat and equal to unity
- Consistent with CP symmetry test

 $R_1 = \frac{1 + \alpha_\Lambda \alpha_\Xi \cos \theta}{1 + \bar{\alpha}_\Lambda \bar{\alpha}_\Xi \cos \theta}$ with $\alpha_\Lambda = (2\alpha_- + \alpha_0)/3$

• If no $\Delta I = 3/2$ transition in Λ decay, $\alpha_{-} = \alpha_{0}$ and $R(\cos \theta_{\overrightarrow{n}}, \cos \theta_{\overrightarrow{p}}) = \frac{1 + \overrightarrow{\alpha}_{0} \overrightarrow{\alpha}_{\Xi} \cos \theta_{\overrightarrow{n}}}{1 + \overrightarrow{\alpha}_{-} \overrightarrow{\alpha}_{\Xi} \cos \theta_{\overrightarrow{p}}}$ are flat and equal to unity

• Indication of $\Delta I = 3/2$ contribution in Λ decay

 $R_2 = \frac{1 + \langle \alpha_0 \rangle \langle \alpha_\Xi \rangle \cos \theta}{1 + \langle \alpha_- \rangle \langle \alpha_\Xi \rangle \cos \theta}$

$e^+e^- \to J/\psi \to \Xi^- \bar{\Xi}^+ \to (\Lambda(p\pi^-)\pi^-)(\bar{\Lambda}(\bar{n}\pi^0)\pi^+) + \text{c.c.}$ (2)

[PRL132(2024)101801]

- If CP is conserved, $\alpha_{-}\alpha_{\Xi} = \alpha_{+}\bar{\alpha}_{\Xi}$ and $R(\cos\theta_{i}, \cos\theta_{\bar{i}}) = \frac{1+\alpha_{-}\alpha_{\Xi}\cos\theta_{i}}{1+\alpha_{+}\alpha_{\Xi}\cos\theta_{\bar{i}}}$ with $i = \{p, n\}$ are flat and equal to unity
- Consistent with CP symmetry test

$$R_1 = \frac{1 + \alpha_\Lambda \alpha_\Xi \cos \theta}{1 + \bar{\alpha}_\Lambda \bar{\alpha}_\Xi \cos \theta}$$
 with $\alpha_\Lambda = (2\alpha_- + \alpha_0)/3$

- If no $\Delta I = 3/2$ transition in Λ decay, $\alpha_{-} = \alpha_{0}$ and $R(\cos \theta_{\overrightarrow{n}}, \cos \theta_{\overrightarrow{p}}) = \frac{1 + \overrightarrow{\alpha}_{0} \overrightarrow{\alpha}_{\Xi} \cos \theta_{\overrightarrow{n}}}{1 + \overrightarrow{\alpha}_{-} \overrightarrow{\alpha}_{\Xi} \cos \theta_{\overrightarrow{p}}}$ are flat and equal to unity
- Indication of $\Delta I = 3/2$ contribution in Λ decay

 $R_2 = \frac{1 + \langle \alpha_0 \rangle \langle \alpha_\Xi \rangle \cos \theta}{1 + \langle \alpha_- \rangle \langle \alpha_\Xi \rangle \cos \theta}$

constraint for IQCD [PRD102(2020)054509] and dual QCD [EPJC74(2014)2871] approach

Varvara Batozskaya

CPV in hyperons at BESIII