

6

F(A)

Real-time reconstruction and calibration Online data processing

Processing step	Relative time
TPC Processing (Tracking, Clustering, Compression)	99.37%
EMCAL Processing	0.20%
ITS Processing (Clustering + Tracking)	0.10%
TPC rANS Encoding	0.10%
ITS-TPC matching	0.09%
MFT Processing	0.02%
TOF Processing and Global Matching	0.02%
Rest	0.1%

https://doi.org/10.1051/epjconf/202429505022 -

The O2 software framework and GPU usage in ALICE online and offline reconstruction in Run 3

- <u>Synchronous reconstruction</u> –
 compress the data from e.g. 600 to 100 GB/s.
- Need <u>fast and precise</u> reconstruction.

- Calibrations need reconstructed tracks.
- Reconstruction needs calibration of tracking.

• Can we avoid the loop?

Real-time reconstruction and calibration

Challenge

Online reconstruction for high level online triggering

Online calibrations

Delays - Calibrations with events take a lot of time

ALICE :

Time projection chamber's drift velocity (Run2).

- Analysis of reconstructed events;
- Runs on 170 computing nodes for ~2 minutes for required precision.

Mikolaj Krzewicki et al 2017 J. Phys.: Conf. Ser. 898 032055

Valentin Kladov

FAIRness 2024

Solution

Existing approaches

GlueX: Drift chamber's global gain;

- NN predictions;
- simple network, fast results.

arXiv:2203.05999v1 [physics.ins-det] 11 Mar 2022

HADES experiment as a pilot study for FAIR experiments

- FAIR Phase Zero experiment;
- Currently running with regular data taking (every 1-2 years);
- Developed infrastructure;

4 planes x 6 sectors of MDC = <u>24 chambers</u>

Valentin Kladov

FAIRness 2024

MDC – mini drift chambers

Possible values to predict:

- Drift time (~"measured" distance) used for track reconstruction.
- <u>Chamber gain (</u>~"measured" dE/dx). used for PID

Ionization losses in drift chambers

Reasons to test on MDC:

- Significant fluctuations (5-10%);
- Clear dependence on environmental parameters;
- Environmental parameters are measured and stored.

Correlations between atmospheric pressure (red) and averaged ionization losses (blue). Feb22.

Input parameters:

- Atmospheric pressure;
- High voltage;
- CO₂ concentration;
- Overpressure;
- H₂O concentration;
- Dew Point;
- Electronics temperature;

- Each dot is a single run, ~100k/24 events, 1-2 min
 - Smooth change with time (~15 min).

Multi-channel prediction

- In general, MDC sectors behave similarly.
- Need to account for the differences.
- Some input parameters are shared (Atm. pressure).

Valentin Kladov

→ Represent detector as a graph for the universality of data handling.

 \rightarrow Utilize similarities by convolutions.

Neural network architecture

Valentin Kladov

FAIRness 2024

Prediction time consumption

Source	
NN Computation speed	l
Database readout from GSI network	
Standard run duration (1 data point)	
Environmental parameter stability interval	
NN initial training	0(N
NN retraining	0(N

Assuming: T_{change} of inner working of the detector $\gg T_{change}$ of environmental parameters

Retraining scheme:

Can retrain at any time as soon new batches of data are available without any interference with predictions!

Depends on	Time
NN propagation $O(N_{nodes})$	$50\pm10~ms$ (24 nodes)
$\sim (N_{nodes})$	1 ± 0.1 <i>s</i> (24 nodes)
-	1 – 2 <i>min</i>
_	~15 min
(epochs * N _{nodes} * N _{runs}) + Init	\sim 30 min (150 epochs, 24 nodes, 10 ³ runs)
(epochs * N _{nodes} * N _{runs}) + Init	$\sim 1~min$ (50 epochs, 24 nodes, 10 ² runs)

	New beamtime

Prediction quality

Simulating new beamtime:

- **1.** Get average dE/dx from offline calibration in feb22 data;
- 2. Train on the part of data, fix most of the parameters after;
- **3.** Predict with added regularization and regular retrainings.

When trained without LSTM and Convolutions: Stability is the main weak point here.

Further improvements in prediction quality

- ullet
- No temperature information. Importance of it was shown in different studies. ullet

Target calibration is far from perfect: wasn't done properly for each run at Hades.

There is a room for improvements.

High voltage prediction x_i

(General) <u>Training procedure</u> if we have data with varied HV:

- 1. Train the model f. Fix parameters.
- 2. Train model G using $|f(X_{i-1}x_i) Y_c|$ as loss.

<u>Sources of generating HV dataset:</u>

- 1. Vary HV during cosmic runs.
- 2. Generate data with Garfield.

Multi-channel prediction

<u>Statistics accumulation is possible this year!</u> (~December)

Summary & Outlook

- 1. The method can provide fast (<1s) calibrations with accuracy, compatible with usual methods.
- 2. Predictions can potentially have smaller spread, but can be less reliable if done without care.
- 3. Very good precision with HADES MDC is possible, if offline calibration is improved.
- 4. Coding-wise, the program is ready for automatic work.

Improvement of offline MDC dE/dx calibration.

Test of predictions on the MDC time-distance calibration.

Fine-tuning of the procedure for CBM usage.

Varying of the HV during cosmic and HV predictions.

Backup

Overview of different calibrations

- Drift time distance. Electronics (offset, tdc etc) and ulletdrift velocity. Calibrated initially with Garfield, after that iteratively corrected with data.
- Stored as a table sector, module, angle, distance drift • time.

Can be possible to calibrate with NN if one reduces this to few parameters: module-sector as nodes, angles as input parameter. Target as parameters of fitting function. Or just both of angle and distance as input parameters and then fill the table with them.

Overview of different calibrations

T_ch29	
10870	
3.899	
05128	
1.141	
4.863	

- TO LGAD. Reconstruct events, calculate expected TO from • other ToF detectors. Correction of time-walk with a linear function of a profile, which appears from the fits in each bin.
- Problems for existing hades are at low values, where ulletstatistics is low and has nonlinearities in time-walk. Too low statistics to make it even as a target – bad application of NN

Ionization losses in drift chambers

Reasons to test on MDC:

- Significant fluctuations (5-10%);
- Clear dependence on environmental parameters;
- A lot of environmental parameters being measured.

Correlations between overpressure (red) and ionization losses, corrected on atmospheric pressure (blue). Feb22.

Target - atmospheric pressure vs overpressure

Input parameters:

- Atmospheric pressure;
- High voltage;
- CO₂ concentration;
- Overpressure;
- H₂O concentration;
- Dew Point;
- Electronics temperature;

Each dot is a single run, ~100k/24 events, 1-2 min

Smooth change with time (~15 min).

Prediction time consumption

Single parameter, simple network

24 parameters, GConv

Wi-Fi, 50 MB/s

17-1265U 10 cores 400\$

Prediction Accuracy (training part)

Stable performance over the beam time.

• Compatible with target, the errors are underestimated.

Software development

Features:

- Retraining with automated hyperparameter search.
- Automatic training set creation with given:
 - Epics channel names.
 - Trigger channel numbers and DQ files location.
 - List of runs, run borders or experimental files directory.
- Methods to save and change above settings + saves of NN data.
- Automated work with epics database:
 - connection,
 - conversation names-numbers,
 - handle missing data,
 - nn part of input on demand for run / list of runs.
- Automated work with trigger DQ files in the same way as for epics.
- Various methods to check training performance and correlations.

Methods:

- Based on C++ and object-oriented programming paradigm.
- Epics db reading with SQL commands.
- Trigger data reading and graphics with ROOT CERN.
- > NN training with pytorch in python and predictions in C++ with ONNX.
- Backend written in Drogon framework for C++.
- Frontend with react.js (little for now).

https://github.com/KladovValentin/drogonapp

Multi-channel prediction

- In general, MDC sectors behave similarly.
- Need to account for differences.
- Some input parameters are shared (Atm. pressure).

- → Represent detector as a graph for the universality of data handling.
- \rightarrow Utilize similarities by convolutions.