

A software tool for your analysis

Malin Bohman

Overview

Introduction	The Use Case of Sprout	The Sprout Family	
How Sprout came about	How Sprout can help you in your analysis	Overview of Sprout's features	

Introduction

- Sprout **Y**: a little C++ project that grew from ROOT
- My background: Hyperon data analysis for Panda@HADES
- Data from proton-proton beam-time at HADES collected in 2022
- **Goal:** Measure *cross sections* for various Sigma0 production channels
- Current focus: Careful studies of Σ⁰ reconstruction efficiencies for different channels

Introduction

The data we're looking for:

Reconstruct final-state particle four-vectors based on detector response to learn something about short-lived particles

The Analysis Workflow

Preselection

Look for presence of final-state particles that could originate from a Σ^0 event

- Assess the data quality:
 - Various qualifiers for detector track quality
 - Use of different triggers
- Determine particle type from detector information
- Check for presence of relevant final-state particles

Preselection

Difficulties:

- Many different parameters and combinations to test and keep track of
- Often changing code to alter parameters
- Easy to lose track and prone to human error

Preselection

Difficulties:

- Many different parameters and combinations to test and keep track of
- Often changing code to alter parameters
- Easy to lose track and prone to human error

SproutParam

Offers a simple way to store and access parameters throughout your analysis

Assess the likelihood that the final state particles actually originated from a Σ^0 event

- Need to filter true Σ^0 events from *background*
 - Falsely identified particles
 - Particles from secondary reactions
 - Combinatorics
- Use *cuts* to decrease background

Assess the likelihood that the final state particles actually originated from a Σ^0 event

- Identify suitable cut variables to separate signal from background
- Use simulations to define a suitable cut value,
 e.g. by optimizing the signal yield
- Must ensure that simulations accurately describe the data in each cut variable

Difficulties:

- An analysis might contain *many* different cuts
 - Many variables to check for agreement between data and simulations
 - Each cut value tuned by trying out ~ 100 positions to optimize yield
 - <u>A lot</u> of quality assurance plots to generate and compare

Difficulties:

- An analysis might contain *many* different cuts
 - Many variables to check for agreement between data and simulations
 - Each cut value tuned by trying out ~ 100 positions to optimize yield
 - <u>A lot</u> of quality assurance plots to generate and compare

Event

Reconstruction

Preselection

- Even after cuts, some background usually remains
- Easily seen from invariant mass histograms
- Commonly use fits to subtract background contributions from the signal yield

Difficulties:

- Each fit needs visual quality assurance. Does it fit the data accurately?
- Especially background distributions may differ over different kinematic regions, no one-model fits all
- Each fit may require different start parameters to not fail
- Some analyses may require ~ 100 fits

Difficulties:

- Each fit needs visual quality assurance. Does it fit the data accurately?
- Especially background distributions may differ over different kinematic regions, no one-model fits all
- Each fit may require different start parameters to not fail
- Some analyses may require ~ 100 fits

Inspired by Rafał Lalik's (Jagiellonian University) software package <u>HelloFitty</u> 🂭

Perform a measurement on yield to extract physics of interest

Caveat: selection cuts may impact the measurement.

Potential source of systematic error!

- Must accurately determine, minimize and evaluate sources of systematic errors
- Common (bad) practice: alter cut values and quote systematic uncertainty based on cumulation of observed variations in the relevant measurement
- May result in:
 - Penalised diligence: Ο
 - many checks = larger systematics
 - Larger systematics = overestimated agreement, Ο fewer citations

Better way: Determine *significant* sources of systematic errors with a *consistency check*

- Check passed \checkmark : do not quote as systematic uncertainty
- Check failed X: remove source of the error. If impossible, evaluate and quote systematic uncertainty
- R. Barlow suggests a check based on the uncorrelated uncertainty between data sets (e.g. two different cut values) Extract
- Measurement Data sets containing the same events are highly statistically correlated Event set a Reconstruction set b Preselection See Roger Barlow, 2002, Systematic Errors: Facts and Fictions 18

Difficulties:

- Many cuts throughout analysis for which a consistency check must be made
- Important to visually inspect how a measurement is impacted by each cut value
 - Look for trends a critical region might be present even if check is passed

SITET Figure from: *Viktor Thorén, Hadron Physics in a Polarized World, 2022*

Difficulties:

- Many cuts throughout analysis for which a consistency check must be made
- Important to visually inspect how a measurement is impacted by each cut value
 - Look for trends and critical regions

SproutCut - features to come: Help you perform consistency checks and generate quality assurance plots to detect systematic errors

See Roger Barlow, 2002, <u>Systematic Errors: Facts and Fictions</u>

The Sprout 🌱 Family

- Data analysis relies heavily on ROOT
- ROOT is great, but:
 - Takes up many lines of code
 - Find myself writing a lot of similar code many times over
- General aims of Sprout **?**:
 - Automate the boilerplate
 - Make it easier to keep manageable and modular

>

The Use Case of Spro

SproutPlot

An analysis involves hundreds of histograms

- SproutPlot keeps a collection of all of them
- Automatically style, draw and write all histograms at once...
- ... but keep the ability to modify individual histograms as usual when needed
- Contains many more features you might find useful!

SproutPlot

SproutPlot myPlots; // create and fill histogr

```
TFile myFile("myFile.root", "recreate");
myFile.cd()
myPlots.writeHist();
```

// create and fill histograms

TFile myFile("myFile.root", "recreate");
myFile.cd();
h1.Write();
h2.Write();
h3.Write();
h4.Write();
h5.Write();
h6.Write();
h6.Write();
h8.Write();
h9.Write();
h10.Write();

SproutFit

- Fits user-specified signal+background distributions to histograms contained in a SproutPlot.
- Signal and background models specified by the user in a .txt file
- Automatically finds suitable start parameters
- Easily modify parameters of bad fits

pol2 gaus -3.11928 4.99871 -2 2 28.7394 7.78128 pol2 gaus -3.11928 4.99871 -2 2 41.237 9,95509 pol2 gaus -3.11928 4.99871 -2 2 19.3014 7.24632 pol2 gaus -3.11928 4.99871 -2 2 29.7916 8.59777 pol2 gaus -3.11928 4.99871 -2 2 36.1238 8.90835 pol2 gaus -3.11928 4.99871 -2 2 72.5726 14.8853 pol2 gaus -3.11928 4.99871 -2 2 37.4449 9.37459 pol2 gaus -3.11928 4.99871 -2 2 34.4013 9.57495 pol2 gaus -3.11928 4.99871 -2 2 75.3767 14.8835 pol2 gaus -3.11928 4.99871 -2 2 22.0282 7.48923 pol2 gaus -3.11928 4.99871 -2 2 23.6093 7.68782 pol2 gaus -3.11928 4.99871 -2 2 24.4318 8.17412 pol2 gaus -3.11928 4.99871 -2 2 10.4908 6.32788 pol2 gaus -3.11928 4.99871 -2 2 29.1846 7.97549 pol2 gaus -3.11928 4.99871 -2 2 37.3783 9.18131 pol2 gaus -3.11928 4.99871 -2 2 22.4391 7,93826 pol2 gaus -3.11928 4.99871 -2 2 78.2404 14.4209 pol2 gaus -3.11928 4.99871 -2 2 24.6451 7.74814 pol2 gaus -3.11928 4.99871 -2 2 36.5364 10.5195 pol2 gaus -3.11928 4.99871 -2 2 34.7326 8.65592 pol2 gaus -3.11928 4.99871 -2 2 33.2054 9.41413 pol2 gaus -3.11928 4.99871 -2 2 32.8913 8.84999 pol2 gaus -3.11928 4.99871 -2 2 28.615 8.67445 pol2 gaus -3.11928 4.99871 -2 2 11.157 6.63691 pol2 gaus -3.11928 4.99871 -2 2 22.894 8.08729

SproutFit

Perform many fits and produce quality assurance plots with ease:

SproutPlot myPlots;
// Add and fill histograms to myPlots
SproutFit fitter;
fitter.fit(myPlots,"myFits.png");

Access Sprout

Who can use Sprout?

- You use C++/ROOT as part of your analysis
- Sprout can be used from both executables and ROOT-macros

Download the package and access guides for set-up and usage at:

https://github.com/malle-b/Sprout

Backup

SproutParam

- Store parameters by name in .txt file and easily retrieve them from your analysis code
- Retrieval algorithm is O(1) on average
- Stored parameters can be changed easily without needing to recompile
- Easily define and run different analysis cases with different sets of parameters for comparison

SproutCut

- Prepare cuts by specifying name (for later access) and cut value
- SproutCut keeps a collection of all created cuts
- Upon applying a cut, automatically generates histogram for quality assurance
- Easily write all generated histograms at once
- See full documentation on GitHub for more and future features

