### Dielectron analysis in p+p collisions at 1.58 GeV beam energy with HADES



Karina Scharmann Justus-Liebig-Universität Gießen, for the HADES collaboration

Fairness 2024 in Donji Seget, Croatia Sep 25, 2024

Contact: karina.scharmann@physik.uni-giessen.de

# 1. Motivation

- Electromagnetic probes offer direct access to all stages in heavy-ion collisions
- The slope and excess of the in-medium contribution allows for the extraction of the mean medium temperature and medium lifetime in heavy-ion collisions
- p+p(n) collisions serve as baseline for the understanding of the Ag+Ag data measured at  $\sqrt{s_{NN}} = 2.55$  GeV in March 2019
- Main uncertainties of the in-medium contribution • originate from the simulated NN reference spectrum
- $\rightarrow$  Provide p+p & p+n reference spectrum for the Ag+Ag measurement from 2019



e



Figure 1: Ag+Ag data with hadronic cocktail and relevant NN channels from simulation [2].

### 2. The HADES Experiment

High Acceptance DiElectron Spectrometer

- Fixed target experiment
- Located at GSI in Darmstadt, Germany
- Operating for more than 25 years with different kinds of hadrons and ions
- Divided into 6 identical sectors each covering 60° of the azimuthal angle
- High acceptance:  $18^{\circ} < \theta < 85^{\circ}$  and full azimuthal acceptance



Figure 2: 3-dimensional schematic view of HADES for the p+p beamtime from 2022.

# 2. The HADES Experiment – The RICH detector

- Upgraded photodetection plane in 2019
   → based on MAPMTs and DiRICH readout
- Filled with isobutan ( $C_4H_{10}$ )  $\rightarrow$  refractive index n = 1.0014
- Thresholds for Cherenkov radiation:
  - Electrons:  $\approx 9 \text{ MeV/c}$
  - Hadrons: > 2.5 GeV/c
- $\rightarrow$  Existence of a ring is a sufficient criterion for the identification of an electron in the RICH detector



Figure 3: Schematic view of the HADES RICH detector after the upgrade in 2019 [1].

# 3. Data Sample

- p+p collisions at 1.58 GeV beam energy collected in February 2022 (Gen2)
- Liquid hydrogen (LH<sub>2</sub>) target



- 380 · 10<sup>6</sup> events available after event selection based on trigger and vertex information
- Measurement with empty target for reconstruction of interactions with target mounting
- 10 % of all events measured with the full target originate from the target mounting (2.5 % for the blue selected area, see figure 5)



Sep 25, 2024

Karina Scharmann

# 4. Identification of electrons

Identification based on

- Velocity information:  $\beta > 0.8$
- Reconstructed mass:  $m^2 < 15000 (MeV/c^2)^2$ for q > 0
- RICH matching quality:  $RMQ < 2^{\circ}$
- Selection of high-quality rings (number of cals, radius information)





Figure 7: The correlation of  $N_{cals}$  and the ring radius is shown. Cuts applied on the ring radius and the number of cals are shown as black lines.

# 5. Reduction of $\gamma$ conversion

 Electrons, which arise from γ conversion, represent the largest part of the physical background of dielectrons



Figure 8: Event displays observed on the HADES RICH MAPMT plane [2].

- Dielectrons from conversions theoretically have an opening angle of 0°
- $\rightarrow$  2 methods of conversion reduction:
- Based on the opening angle for  $3^{\circ} < \theta < 9^{\circ}$
- Based on the number of cals for  $0^\circ < \theta < 3^\circ$



Figure 9:  $\theta$  dependent cal distribution for  $31^{\circ} < \theta < 37^{\circ}$ . The structure is fitted by two Gaussian functions: isolated rings in black, double rings in blue.

# 6. Calculation of the dielectron signal

- Definition of acceptance based on 'white electron simulations'
- Correction for acceptance and efficiency losses based on  $p_t$ -y-distribution (further acceptance correction in  $\pi^0$  mass region ongoing,  $\approx 10 - 20$  % increase expected for signal)
- Calculation of the combinatorial background based on like-sign pairs & event mixing:

$$\langle BG_{+-} \rangle = 2 \cdot k \sqrt{\langle FG_{++} \rangle \langle FG_{--} \rangle}$$

$$k = \frac{\langle fg_{+-} \rangle}{2\sqrt{\langle fg_{++} \rangle \langle fg_{--} \rangle}}$$



Figure 10: Product of acceptance and efficiency. Only electrons within the red cuts are used for the analysis.

# 6. Calculation of the dielectron signal

- Dielectron signal up to 500 MeV/c<sup>2</sup>
- Signal to background ratio > 1
- Measured number of pairs:





Figure 11: The signal has been calculated by subtracting the combinatorial backgound (BG) from the same event unlike-sign pairs ( $N_{+-}$ ).

# 7. Calculation of the dielectron cross sections

- Normalization based on elastic p+p events ( $L = 400 \text{ nb}^{-1}$ )
- Introduction of a trigger bias factor to consider the influence of the event selection criteria on the number of reconstructed dileptons







Figure 13: Differential cross sections for dielectrons in p+p collisions at various beam energies in HADES [3].

# 8. $\pi^0$ multiplicities from $\pi^0 \rightarrow \gamma \gamma$ channel

|                              | PT3   | $\geq$ 2 Tracks |
|------------------------------|-------|-----------------|
| No vertex <sub>z</sub> cut   | 0.097 | 0.101           |
| With vertex <sub>z</sub> cut | 0.099 | 0.101           |

• Full target:

• Empty target:

|                              | PT3   | $\geq$ 2 Tracks |
|------------------------------|-------|-----------------|
| No vertex <sub>z</sub> cut   | 0.057 | 0.058           |
| With vertex <sub>z</sub> cut | /     | /               |

#### Multi-differential analysis (in p<sub>t</sub>, y) based on ECAL



Figure 14: The  $\pi^0$  signal has been calculated for the  $\gamma\gamma$  channel using the ECAL and mixed event technique for BG calculation [5].

### 9. Comparison of empty & full target



#### Karina Scharmann

### 9. Comparisons to GiBUU

- For model comparisons use GiBUU simulations (Release 2023, patch 2)
- Channels: p+p (comparison to full target measurement) p+C, p+O (comparisons to empty target)
- Acceptance definition: identical to experiment (see figure 10)
- Momentum searing: extracted smearing map from experiment used as input in GiBUU (see figure 16)



Figure 16: Extracted smearing map (a) and the ratio of ideal and reconstructed momentum (b) used for GiBUU simulations.

# 9. Comparisons to GiBUU



Figure 17: Comparison with GiBUU simulation for p+p at 1.58 GeV beam energy [4].

#### **Results:**

#### Full target:

- Good agreement
- Still missing efficiency correction in  $\pi^0$  mass region will further improve the agreement

Empty target:

► Mylar = 
$$C_{10}H_8O_4$$
  
→ p+Mylar =  $\frac{10}{22}$  p+C  
+  $\frac{8}{22}$  p+p +  $\frac{4}{22}$  p+C

$$+\frac{1}{22}p+p+\frac{1}{22}p+0$$

- empty / full target  $\approx 1.5$
- p+Mylar / p+p (GiBUU)  $\approx 2$



Figure 18: GiBUU simulation for p+p and p+Mylar.



Figure 19: Ratio of p+p and p+Mylar simulation.

### Summary

- Dielectron signal with signal to background ratio > 1 reconstructed
- Dielectron cross section calculated using p+p elastic collisions
- Dielectron cross section of p+p in agreement with theoretical predictions
- Ratio of empty and full target measurements calculated and compared to theory

#### References:

[1] Weber, Adrian Amatus (2021). Development of readout electronics for the RICH detector in the HADES and CBM experiments - HADES RICH upgrade, mRICH detector construction and analysis -. Justus Liebig University Giessen. DOI: 10.22029/jlupub-288

[2] Otto, Jan-Hendrik (2022). Dilepton reconstruction in Ag+Ag collisions at  $\sqrt{s_{NN}} = 2.55 \ GeV$  with HADES. Justus Liebig University Giessen. DOI: 10.22029/JLUPUB-7207.

[3] Agakishiev, G. et al. (2012). Inclusive dielectron production in proton-proton collisions at 2.2 GeV beam energy. Physical Review C 85.5. DOI: 10.1103/physrevc.85.054005.

[4] Gallmeister, Kai O. (2023). Private communication.

[5] Albohn, Lena M. (2024). Private communication.

#### Supported by BMBF grant No 05P21RGFC1 & HFHF

# Outlook

- Finalize signal spectra for full and empty target
- Together with simulations from GiBUU establish p+n reference
- → Provided p+p and p+n reference allow the extraction of the medium temperature and excess yield in the Ag+Ag measurement.



Figure 20: Ag+Ag data with hadronic cocktail and relevant NN channels from simulation [2].



### Thank you for your attention!

