Dielectron analysis in p+p collisions at 1.58 GeV beam energy with HADES

Karina Scharmann Justus-Liebig-Universität Gießen, for the HADES collaboration

Fairness 2024 in Donji Seget, Croatia Sep 25, 2024

Contact: karina.scharmann@physik.uni-giessen.de

1. Motivation

- Electromagnetic probes offer direct
access to all stages in heavy-ion collisions $\gamma \overline{\gamma}$
- The slope and excess of the in-medium contribution allows for the extraction of the mean medium temperature and medium lifetime in heavy-ion collisions
- p+p(n) collisions serve as baseline for the understanding of the Ag+Ag data measured at $\sqrt{s_{NN}}$ = 2.55 GeV in March 2019
- Main uncertainties of the in-medium contribution originate from the simulated NN reference spectrum
- \rightarrow Provide p+p & p+n reference spectrum for the Ag+Ag measurement from 2019

Figure 1: Ag+Ag data with hadronic cocktail and relevant NN channels from simulation [2].

2. The HADES Experiment

High **A**cceptance **D**i**E**lectron **S**pectrometer

- Fixed target experiment
- Located at GSI in Darmstadt, Germany
- Operating for more than 25 years with different kinds of hadrons and ions
- Divided into 6 identical sectors each covering 60° of the azimuthal angle
- High acceptance: $18^{\circ} < \theta < 85^{\circ}$ and full azimuthal acceptance

Figure 2: 3-dimensional schematic view of HADES for the p+p beamtime from 2022.

2. The HADES Experiment – The RICH detector

- Upgraded photodetection plane in 2019 \rightarrow based on MAPMTs and DiRICH readout
- Filled with isobutan (C_4H_{10}) \rightarrow refractive index $n = 1.0014$
- Thresholds for Cherenkov radiation:
	- Electrons: ≈ 9 MeV/c
	- Hadrons: > 2.5 GeV/c
- \rightarrow Existence of a ring is a sufficient criterion for the identification of an electron in the RICH detector

Figure 3: Schematic view of the HADES RICH detector after the upgrade in 2019 [1].

3. Data Sample

- p+p collisions at 1.58 GeV beam energy collected in February 2022 (Gen2)
- Liquid hydrogen $(LH₂)$ target

- 380 \cdot 10⁶ events available after event selection based on trigger and vertex information
- Measurement with empty target for reconstruction of interactions with target mounting
- 10 % of all events measured with the full target originate from the target mounting (2.5 % for the blue selected area, see figure 5)

Sep 25, 2024 Karina Scharmann Scharmann Scharmann Scharmann Scharmann Scharmann Scharmann Scharmann Scharmann S

4. Identification of electrons

Identification based on

- Velocity information: $\beta > 0.8$
- Reconstructed mass: $m^2 < 15000$ (MeV/c²)² for $q > 0$
- RICH matching quality: $RMQ < 2^{\circ}$
- Selection of high-quality rings (number of cals, radius information)

Figure 7: The correlation of N_{cals} and the ring radius is shown. Cuts applied on the ring radius and the number of cals are shown as black lines.

5. Reduction of γ conversion

• Electrons, which arise from γ conversion, represent the largest part of the physical background of dielectrons

Figure 8: Event displays observed on the HADES RICH MAPMT plane [2].

- Dielectrons from conversions theoretically have an opening angle of 0°
- \rightarrow 2 methods of conversion reduction:
- Based on the opening angle for $3^{\circ} < \theta < 9^{\circ}$
- Based on the number of cals for $0^{\circ} < \theta < 3^{\circ}$

Figure 9: θ dependent cal distribution for 31° $< \theta <$ 37°. The structure is fitted by two Gaussian functions: isolated rings in black, double rings in blue.

6. Calculation of the dielectron signal

- Definition of acceptance based on 'white electron simulations'
- Correction for acceptance and efficiency losses based on p_t -y-distribution (further acceptance correction in π^0 mass region ongoing, ≈10 - 20 % increase expected for signal)
- Calculation of the combinatorial background based on like-sign pairs & event mixing:

$$
\langle BG_{+-} \rangle = 2 \cdot k \sqrt{\langle FG_{++} \rangle \langle FG_{--} \rangle}
$$

$$
k = \frac{\langle fg_{+-} \rangle}{2\sqrt{\langle fg_{++} \rangle \langle fg_{--} \rangle}}
$$

Figure 10: Product of acceptance and efficiency. Only

6. Calculation of the dielectron signal

- Dielectron signal up to 500 MeV/ c^2
- Signal to background ratio > 1
- Measured number of pairs:

Figure 11: The signal has been calculated by subtracting the combinatorial backgound (BG) from the same event unlike-sign pairs (N_{+}) .

7. Calculation of the dielectron cross sections

- Normalization based on elastic p+p events ($L = 400$ nb⁻¹)
- Introduction of a trigger bias factor to consider the influence of the event selection criteria on the number of reconstructed dileptons

Figure 12: Calculation of the trigger bias factor for PT2 and PT3 triggered events. The distribution has been fitted (shown in red). Figure 13: Differential cross sections for dielectrons in p+p collisions at various beam energies in HADES [3].

8. π^{0} multiplicities from $\pi^{0} \rightarrow \gamma \gamma$ channel

• Full target:

• Empty target:

Multi-differential analysis (in p_t , y) based on ECAL

Figure 14: The π^0 signal has been calculated for the $\gamma\gamma$ channel using the ECAL and mixed event technique for BG calculation [5].

9. Comparison of empty & full target

Sep 25, 2024 Karina Scharmann (Karina Scharmann Karina Scharmann Karina Scharmann Karina Scharmann Karina Scharmann Karina Scharmann (Karina Scharmann Karina Scharmann Karina Scharmann Karina Scharmann Karina Scharmann Kar

9. Comparisons to GiBUU

- For model comparisons use GiBUU simulations (Release 2023, patch 2)
- Channels: p+p (comparison to full target measurement) p+C, p+O (comparisons to empty target)
- Acceptance definition: identical to experiment (see figure 10)
- Momentum searing: extracted smearing map from experiment used as input in GiBUU (see figure 16)

Figure 16: Extracted smearing map (a) and the ratio of ideal and reconstructed momentum (b) used for GiBUU simulations.

9. Comparisons to GiBUU

Figure 17: Comparison with GiBUU simulation for p+p at 1.58 GeV beam energy [4].

Results:

Full target:

- Good agreement
- Still missing efficiency correction in π^0 mass region will further improve the agreement

Empty target:

• Mylar =
$$
C_{10}H_8O_4
$$

\n \rightarrow p+Mylar = $\frac{10}{22}$ p+C
\n $\frac{8}{22}$ p+C

$$
+\frac{6}{22} p+p+\frac{4}{22} p+O
$$

• empty / full target ≈ 1.5

 $p+Mylar / p+p$ (GiBUU) ≈ 2

Figure 18: GiBUU simulation for p+p and p+Mylar.

Figure 19: Ratio of p+p and p+Mylar simulation.

Summary

- Dielectron signal with signal to background ratio > 1 reconstructed
- Dielectron cross section calculated using p+p elastic collisions
- Dielectron cross section of p+p in agreement with theoretical predictions
- Ratio of empty and full target measurements calculated and compared to theory

References:

[1] Weber, Adrian Amatus (2021). Development of readout electronics for the RICH detector in the HADES and CBM experiments - HADES RICH upgrade, mRICH detector construction and analysis -. Justus Liebig University Giessen. DOI: 10.22029/jlupub-288

[2] Otto, Jan-Hendrik (2022). Dilepton reconstruction in Ag+Ag collisions at $\sqrt{s_{NN}}$ = 2.55 GeV with HADES. Justus Liebig University Giessen. DOI: 10.22029/JLUPUB-7207.

[3] Agakishiev, G. et al. (2012). Inclusive dielectron production in proton-proton collisions at 2.2 GeV beam energy. Physical Review C 85.5. DOI: 10.1103/physrevc.85.054005.

[4] Gallmeister, Kai O. (2023). Private communication.

[5] Albohn, Lena M. (2024). Private communication.

Supported by BMBF grant No 05P21RGFC1 & HFHF

Outlook

- Finalize signal spectra for full and empty target
- Together with simulations from GiBUU establish p+n reference
- \rightarrow Provided p+p and p+n reference allow the extraction of the medium temperature and excess yield in the Ag+Ag measurement.

Figure 20: Ag+Ag data with hadronic cocktail and relevant NN channels from simulation [2].

Thank you for your attention!

