

HADES

65 I

**RUHR
UNIVERSITÄT**

BOCHUM

RUB

FAIRNESS 2024 **FAIRNESS**

Saket Kumar Sahu¹ ,Johan Messchendorp³ and James Ritman1,2,3

¹Ruhr University Bochum (RUB) 2 Forschungszentrum Jülich, Jülich, Germany 3GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt, Germany

Table of Contents

- Physics Motivation
- Analysis Details
	- PID Procedure
- Dalitz Plot of $np\pi^+$
	- Kinfit Missing Mass Constraint
- Outlook

• The study of **electromagnetic currents** in hadronic processes and baryon decays via their **dilepton decay** channels is still not fully understood.

- The study of **electromagnetic currents** in hadronic processes and baryon decays via their **dilepton decay** channels is still not fully understood.
- The electromagnetic structure of the lowest lying excitation of the nucleon, the **∆ resonance**, remains of particular interest.

- The study of **electromagnetic currents** in hadronic processes and baryon decays via their **dilepton decay** channels is still not fully understood.
- The electromagnetic structure of the lowest lying excitation of the nucleon, the **∆ resonance**, remains of particular interest.
- This is accessible via radiative transitions such as $\Delta \rightarrow \Delta \gamma$ with real or, preferably, virtual photons.

• The first challenge is to understand the **production mechanism** and **reaction dynamics** of different N and \triangle states in $pp \rightarrow NN\pi$.

- The first challenge is to understand the **production mechanism** and **reaction dynamics** of different N and Δ states in $pp \rightarrow NN\pi$.
- The second challenge lies in the **identification of (mostly) low-mass dilepton pairs.**
- The main aim of the analysis presented in this talk is to extract **differential cross-sections** for the exclusive ∆ channels in proton-proton collisions at 4.5 GeV.

$$
p + p \rightarrow p\Delta^{+} \rightarrow pn\pi^{+}
$$

\n
$$
p + p \rightarrow n\Delta^{++} \rightarrow np\pi^{+}
$$

\n
$$
p + p \rightarrow \Delta^{++}\Delta^{0} \rightarrow p\pi^{+}p\pi^{-}
$$

- The first challenge is to understand the **production mechanism** and **reaction dynamics** of different N and Δ states in pp \rightarrow NN π .
- The second challenge lies in the **identification of (mostly) low-mass dilepton pairs.**
- The main aim of the analysis presented in this talk is to extract **differential cross-sections** for the exclusive ∆ channels in proton-proton collisions at 4.5 GeV.

 $p + p \rightarrow p\Delta^{+} \rightarrow pn\pi^{+}$ $p + p \rightarrow n\Delta^{++} \rightarrow np\pi^{+}$ $\rm p + p$ $\rm \rightarrow \Delta^{++} \Delta^{0} \rightarrow p \pi^{+} p \pi^{-}$

- Good basis to **compare with theory** for understanding the internal structure through radiative transitions.
- Also as reference to **heavy ion reactions**.

 Δ^{++}

HADES-High Acceptance DiElectron Spectrometer

- **Versatile magnetic spectrometer** located at GSI Darmstadt.
- Can measuring wide range of charged particle final states, has **excellent e⁺ /e[−] reconstruction**.
- Data used in analysis is **1/30** of full statistics collected in **pp at T=4.5 GeV**.

Analysis Details

- Only **Tracks in HADES**, no Forward Detector used.
- Events selected with **exactly 2 positive** and **0 negative tracks**.

Analysis Details

- Only **Tracks in HADES**, no Forward Detector used.
- Events selected with **exactly 2 positive** and **0 negative tracks**.

PID Procedure

• For each event, four track combinations are evaluated:

 $\text{pp}, \text{p}\pi^+, \pi^+\text{p}, \pi^+\pi^+$

- Relative Time Difference (ΔT) = rel_{tof track1} rel_{tof} track₂, where $rel_{\text{tof}} = \text{tof}_{\text{measured}} - \text{tof}_{\text{expected}}$ taking proton,pion mass.
- For each event, four ∆T values are calculated corresponding to the four possible track combinations.
- The track combination with the smallest absolute value of ∆T is chosen to identify the PID of the two tracks.
- Optimum cut value on ∆T found by comparing the statistical significance for the missing neutron peak, which is found to be $|\Delta T|$ < 3.2 ns.

PID Procedure

• For each event, four track combinations are evaluated:

 $\text{pp}, \text{p}\pi^+, \pi^+\text{p}, \pi^+\pi^+$

• Relative Time Difference (ΔT) = rel_{tof track1} rel_{tof} track₂, where $rel_{\text{tof}} = \text{tof}_{\text{measured}} - \text{tof}_{\text{expected}}$ taking

proton,pion mass.

- For each event, four ∆T values are calculated corresponding to the four possible track combinations.
- The track combination with the smallest absolute value of ∆T is chosen to identify the PID of the two tracks.
- Optimum cut value on ∆T found by comparing the statistical significance for the missing neutron peak, which is found to be $|\Delta T|$ < 3.2 ns.

Neutron Selection

Dalitz Plot

- Dalitz plot for $np\pi^+$ final state between $M^2p\pi^+$ vs $M^2n\pi^+$.
- count rate, **without correcting for acceptance** and **background subtraction.**

Dalitz Plot

- Dalitz plot for $np\pi^+$ final state between $M^2p\pi^+$ vs $M^2n\pi^+$.
- count rate, **without correcting for acceptance** and **background subtraction**

Δ^+ Suppression

$$
p\pi^+ n: C_{iso} = \sqrt{\frac{2}{3}} \quad p\pi^+ \Delta^{++} : C_{iso} = 1 \qquad \Delta^{++} p\pi^+ : C_{iso} = 1
$$

$$
p\pi^0 p: C_{iso} = -\sqrt{\frac{1}{3}} \quad p\pi^0 \Delta^+ : C_{iso} = \sqrt{\frac{2}{3}} \quad \Delta^+ n\pi^+ : C_{iso} = \sqrt{\frac{1}{3}}
$$

So expected
$$
\frac{\Delta^{++}}{\Delta^+}
$$
 = 9

⁺ Suppression

Sideband Analysis of the Dalitz Plot

• Take sideband around missing neutron mass.

• KinFit- a kinematic fitting package based on Lagrange Multiplier technique.

- KinFit- a kinematic fitting package based on Lagrange Multiplier technique.
- For scaling the kinematics of the sidebands, momentum constraint for missing particle (the neutron) was applied

- KinFit- a kinematic fitting package based on Lagrange Multiplier technique.
- For scaling the kinematics of the sidebands, momentum constraint for missing particle (the neutron) was applied.
- The four-momentum of the missing particle can be extracted after the fit.

- KinFit- a kinematic fitting package based on Lagrange Multiplier technique.
- For scaling the kinematics of the sidebands, momentum constraint for missing particle (the neutron) was applied.
- The four-momentum of the missing particle can be extracted after the fit.

Can be thought as the 1C fit is shrinking the momentum of lower sideband to lower values and stretching the momentum of the upper

sideband to higher values.

• Sideband Subtracted $np\pi^+$ final state Dalitz plot.

• Sideband Subtracted $np\pi^+$ final state Dalitz plot.

Before and After

Before and After

Before and After

Conclusion and Outlook

- Clear identification of exclusive three-body channel: $pp \rightarrow pn\pi^+$ with very high statistics, good S/B ratio.
- Kinfit and Sideband Subtraction was tested.
- Work on optimisation of the sideband windows.
- Study MC simulations of the reaction to get a measure of acceptances and efficiencies.
- Use Forward Detector to cover even the missing pieces in the Dalitz plot.
- Do a Partial Wave Analysis of $pn\pi^+$ final state.
- Analyse the dilepton decay channel of the N and Δ resonances

Conclusion and Outlook

- Clear identification of exclusive three-body channel: $pp \rightarrow pn\pi^+$ with very high statistics, good S/B ratio.
- Kinfit and Sideband Subtraction was tested.
- Work on optimisation of the sideband windows.
- Study MC simulations of the reaction to get a measure of acceptances and efficiencies.
- Use Forward Detector to cover even the missing pieces in the Dalitz plot.
- Do a Partial Wave Analysis of $pn\pi^+$ final state.
- Analyse the dilepton decay channel of the N and Δ resonances

Fig. 2. Bremsstrahlung and Δ -resonant contributions to $N\pi\gamma'$ final states for pion photoproduction (a) and pion scattering (b) . Only diagrams $(a3)$ and $(b3)$ are sensitive to the magnetic dipole moments $\mu_{\varDelta}.$

Fig. 18. Cross section ratio R at different ranges for beam energy ω and total c.m. energy W, respectively. Black points represent Crystal Ball / TAPS results, white squares are results from ref. [19]. Error bars denote statistical errors, grey shaded bands show absolute systematic uncertainties. Black lines are theoretical predictions (using $\kappa_{\Delta^+} = 2.6$) of the unitary model from ref. $\boxed{33}$ (dashed line) and the χ EFT calculation from ref. $\boxed{35}$ (solid line).

Appendix D: U-NET

- U-NET is an image segmentation algorithm which was originally designed for biomedical uses in the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks^[6].
- The architecture relies heavily on the use of data augmentation and is strong with training on small datasets.
- Segmentation of a 512x512 image takes less than a second on a recent GPU.

Figure 8:U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations. Image and caption sourced from Ref [9].

[9] U-Net: Convolutional Networks for Biomedical Image Segmentation, arXiv:1505.04597, Last accessed 02-07-2024.

Branching Ratio for $\Delta^+ \rightarrow pe^+e^-$ is 4.2×10^{-5}

- The main long term aim of the analysis is to do a **feasibility study** of the **radiative transitions** of the Δ as they provide insights into their electromagnetic structure.
- The magnetic moment of the Δ^+ , $\mu_{\Delta^+} = 2.7^{+1.0}_{-1.3}$ (stat) ± 1.5 $(syst) \pm 3.0$ (theo) μ_N ^[1] has **large theoretical uncertainty** due to model ambiguities.
- **Virtual photon (dilepton)** transitions may provide a less model dependent extraction of the magnetic moment exploiting a measurement of the **spin-density matrix elements (SDME)**.

Sideband subtracted without kinfit

- First calculate $rel_{\text{tof}} = \text{tof}_{\text{measured}} \text{tof}_{\text{expected}}$ taking proton, pion and deuteron mass where to $f_{\text{expected}} = \frac{L}{c}$ \mathcal{C}_{0} . p^2 + M_{PDG}^2 \boldsymbol{p}
- For each event find the least value of rel_{tof} and compare it with the tof_{expected} for each particle.
- The matching rel_{tof} for that event is assigned the corresponding particle PID.

• Plotting rel_{tof_track1} vs rel_{tof_track2} for the 4 cases.

