RUB

Investigating Proton-Proton Elastic Scattering with the Upgraded HADES Spectrometer

Gabriela Perez Andrade FAIRNESS 2024 23-27 September 2024 Donji Seget, Croatia

Outline

- HADES @FAIR Phase-0
- Proton-proton elastic scattering reaction event selection
- Time-integrated Luminosity
- Elastic scattering differential cross-section

HADES @FAIR Phase-0

HADES hyperon physics program at SIS18 include (*):

- Hyperon electromagnetic decays
- Multi-strangeness production

- Installed as part of FAIR Phase-0 upgrade: essential for hyperon reconstruction
- Two Straw **Tracking** Stations (STS1/2)
- A forward Resistive Plate Chamber (fRPC) for time-of-flight measurements
- Increases the HADES acceptance to the region $1^\circ < \theta < 6^\circ$

- Proton beam from SIS18 at $E_{kin} = 4.5$ GeV, p = 5.3 GeV/c
- LH₂ target

3

Polar angle distribution of protons emitted from $\Lambda(1520)$ decay [1]

(*) E.g. Pattnaik, Kumar, Sumara, Władyszewska talks

[1] Adamczewski-Musch, J., et al. "Production and electromagnetic decay of hyperons: a feasibility study with HADES as a phase-0 experiment at FAIR." The European Physical Journal A 57.4 (2021): 1-21.

Proton-Proton Elastic Scattering

BOCHUM

Proton-Proton Elastic Scattering Event Selection

- Negligible background after selection
- Distributions centered at nominal value show good position alignment between the FD system and main HADES

5

Time-integrated Luminosity (L)

• The **cross section** (σ) of a measured reaction, e.g. hyperon decays, is determined by:

 $\sigma = \frac{N \times \epsilon}{\mathcal{L}}$ N = Number of measured events $\epsilon = \text{Efficiency corrections}$ $\mathcal{L} = \text{Time-integrated luminosity}$

• Number of p-p elastic (N_{el}) scattering events used to determine \mathcal{L} achieved in the HADES 2022 production run:

$$\mathcal{L} = \frac{1}{\sigma_{el}} \int \frac{dN_{el} \times DS \times d\eta}{d\epsilon} dt$$

$$dt = \text{Squared four momentum transferred}$$

$$\sigma_{el} = \text{Integrated cross-section interpolated from [2]}$$

$$dN_{el} = \text{Elastic scattering yield}$$

$$DS = 64 = (Pre) \text{-scaling factor}$$

$$d\eta = \text{FD efficiency, data vs simulation}$$

$$d\epsilon = \text{Reconstruction efficiency}$$

$$dt = \frac{1}{\sigma_{el}} \int \frac{dN_{el} \times DS \times d\eta}{d\epsilon} dt$$

Elastic Protons Yield (N_{el})

- Obtained from the $\Delta \phi$ distribution since it shows a ٠ negligible background after all selections.
- Bin by bin **integration** of $\Delta \phi$ distribution within the ٠ HF-selection angular range.

Example of $\Delta \varphi$ **distribution**, single bin (DATA)

BOCHUM

Efficiency Correction (ε)

$$\varepsilon = \frac{N_{el, reco}}{N_{el, Total}} = A \times \varepsilon_t \times \varepsilon_H \times \varepsilon_{H+FD} \times \varepsilon_{sel}$$

- Reconstruction efficiency from simulation, includes:
 - A = HADES Acceptance
 - $\varepsilon_t = \text{Trigger efficiency}$
 - ε_H = Single-H track reconstruction efficiency
 - ε_{H+FD} = FD track reconstruction efficiency under the condition that a H track was reconstructed
 - ε_{sel} = Efficiency after scattering selections

η -Correction Factor

 $\eta = \frac{(\Delta p \text{ HF-selection})/(\Delta p \text{ single-H selection})_{sim}}{(\Delta p \text{ HF-selection})/(\Delta p \text{ single-H selection})_{data}}$

- $\Delta p \text{ reco elastic} = \text{integral of } \Delta p \text{ distribution} \text{ after PID}, \ \Delta \varphi \text{ and } \tan \theta_1 \times \tan \theta_2 \text{ cuts}$
- Δp total = integral of Δp distribution after PID (equivalent to Single-H selection)
- $\Delta p \ reco \ elastic \ /\Delta p \ total \ shows \ FD \ efficiency$
- η compares efficiency between sim and data \rightarrow Closer to 1 when efficiency in sim and data are the same

Non-uniform background across t-range.

Time Integrated Luminosity (L)

$$\mathcal{L} = \frac{1}{\sigma_{\rm el}} \int \frac{\mathrm{dN}_{\rm el} \times \mathrm{DS} \times \mathrm{d\eta}}{\mathrm{d}\varepsilon} \mathrm{dt}$$

- Normalization range: $70^{\circ} < \vartheta_{H,LAB} < 79^{\circ} \text{ or } -0.318 < t < -0.093 (GeV/c)^2$
- The yield of elastic scattering protons corrected by ε and η is given by: $dN = \frac{dN_{el} \times DS \times d\eta}{d\varepsilon}$
- The interpolated [2] cross section is: $\sigma_{el} = (4.69 \pm 0.04) \text{ mb/GeV}^2$
- The Integrated Luminosity from the HF-selection (preliminary) is $\mathcal{L} = (5.86 \pm 0.09) \ pb^{-1}$

Elastic Scattering Differential Cross-Section

• The proton-proton elastic scattering differential cross-section $\left(\frac{d\sigma_{el}}{dt}\right)$ is commonly written as:

The dominant contribution is determined by t

• For HADES measurements, the nuclear contribution dominates:

$$\frac{d\sigma_n}{dt} = \frac{\sigma_{tot}^2(1+\rho^2)}{16\pi(\hbar c)^2} e^{-B|t|} \text{, where:} \begin{array}{l} B = \text{nuclear slope parameter} \\ \rho = \frac{Re\{f_n(0)\}}{Im\{f_n(0)\}}, f_n \text{ the nuclear component amplitude} \\ \sigma_{tot} = \text{total cross-section} \end{array} \begin{array}{l} \textbf{Experimentally} \\ \textbf{determined at} \\ \textbf{different t ranges} \end{array}$$

• The differential cross-section in this t-region is well described by

$$: \quad \frac{d\sigma_n}{dt} = Ae^{-B|t|}$$

Where : $A = \frac{d\sigma_n}{dt}\Big|_{t=0}$ is called the **optical point** *B* is the **nuclear slope** parameter ρ is **not accessible** at this t-region

Elastic Scattering Differential Cross-Section

- The differential cross-section is obtained by normalizing the corrected number of elastic protons with \mathcal{L} as: $\frac{d\sigma}{dt} = \frac{1}{\mathcal{L}} \frac{dN}{dt}$
- Parameters obtained by fitting the HADES data with $\frac{d\sigma_n}{dt} = \frac{d\sigma_n}{dt}\Big|_{t=0} e^{-B|t|}$

- The differential cross-section shape and nuclear slope obtained from HADES data at 5.3 GeV/c are in good agreement with existing data from other experiments.
- Figure shows the **extrapolation** of the cross-section to the optical point $\frac{d\sigma_n}{dt}\Big|_{t=0}$

Optical Point and Nuclear Slope Parameter

Comparison with Other Experiments

- Optical point, has dependence on the Argonne data since it was used in the normalization (*L* determination).
- The **nuclear slope** parameter *B* only **depends** on the **HADES+FD performance** to measure elastic scattering events.

- The **HADES** spectrometer **upgrade** for the **FAIR Phase-0** includes FD components, crucial for **hyperon reconstruction**
- The **proton-proton elastic scattering** event reconstruction:
 - Shows the **good alignment** between the **FD** system and the **main HADES**
 - Used to obtain the proton-proton elastic scattering differential cross-section
- The determined (preliminary) integrated luminosity is: $\mathcal{L} = (5.86 \pm 0.09) \text{ pb}^{-1}$
- The **differential cross-section** shape and nuclear slope obtained from **HADES** data at 5.3 GeV/c are in **good agreement** with existing data from other experiments
- Awaiting new interesting results from **hyperon** analyses

Current PID based on p and β

Systematic uncertainties (preliminary)

Source	Uncertainty in % (4.5 GeV)
PID method	2.10
$\tan \theta_1 \times \tan \theta_2$	1.18
$\Delta p ext{ fit}$	5.52
Normalization range	6.9
Total	13.10

HADES hyperon physics program @FAIR PHASE-0

Hyperons are used as an experimental tool to probe the confinement domain ($\Lambda_{QCD} \sim 200$ MeV).

Hyperon Electromagnetic Decays:

- Dalitz decays $Y^* \rightarrow \Lambda e^+ e^-$:
 - Access electromagnetic Transition Form Factors (eTFF) at low t: experimentally unexplored
- Radiative decays $Y^* \rightarrow \Lambda \gamma$:
- To differentiate between models [2]
- Sparse experimental results available

HADES will provide pioneering information about baryon structure in the low Q-region.

Double Strangeness Production:

 Ξ⁻ production: Enhanced yield seen in previous HADES measurements

HADES will provide pp references to quantify the strangeness enhancement in heavier systems

- Λ-Λ production/interaction in pp:
- Important for neutron star core studies [3,4]
- Complementary to upcoming PANDA studies of $\Lambda\text{-}\overline{\Lambda}$ in $\overline{p}p$

B. Ramstein, AIP Conf. Proc. 1735, 080001 (2016) [HADES]
 E. Kaxiras, E.J. Moniz, M. Soyeur, Phys. Rev. D 32, 695 (1985)
 N.K. Glendenning, APJ 293, 470 (1985)
 Vidaña, I. (2022). *EPJ Web of Conferences* (Vol. 271, p. 09001). EDP Sciences.

1