

Hyperon-Production Studies in p+p-> Λ +K_s+ p + π ⁺ at 4.5 GeV with HADES at GSI

Snehankit Pattnaik

For the HADES Collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH

FAIRness Conference, Donji Seget, Croatia

Introduction

Outline

- Motivation
- HADES experiment
- Analysis techniques
- Results
- Outlook

Strangeness Studies

- Baryons containing at least a strange/charm quark.
- Probe to study the strong interaction, via spectroscopy and structure studies.
- Formation of hyperons of interest to understand dense QCD matter, such as the core of neutron stars [1].
- Microscopic study of the hyperon-nucleon interaction necessary to describe the Equation Of State and resolve the hyperon puzzle [1].

[1] Diego Lonardoni et al 2015, Phys. Rev. Lett. 114, 092301

Snehankit Pattnaik, GSI-FFN

FAIRNESS Conference

Hyperon Resonances

- Non-perturbative QCD isn't well understood at low energies:
 - The study of hyperon resonances can provide insights into hyperon production and final state interactions.
- Hyperon spectrum :
 - Lattice QCD predict many states not yet discovered [1].
 - Hints of exotic states e.g. pentaquarks and dibaryon structures [2].
- Multiple Decay Channels with intermediate resonances:
 - \circ *N** often couple strongly to meson-baryon channels.

Nucleons and Deltas spectrum from lattice calculations [1].

Methodology

This work at kinetic energy of 4.5 GeV

- $pp \rightarrow \Lambda + K^+ + p$, previously analyzed at T = 3.5 GeV.
- Hints of hyperon resonances within mass range of 1.6 GeV/c² to 2.0 GeV/c² at 3.5 GeV [1-2].

 $\mathcal{D}\mathcal{D}$

- Search for N^* resonance decays to strangeness with K_S and Λ as final state particles [1-2].
- Total and differential cross section measurements for this channel at 4.5 GeV with proton-proton reaction.
- Extract spin degrees of freedom via measurements of spin density matrix elements of *K** and self-polarization of Λ.

 K^0_S

p

 $pp \rightarrow \Sigma^+(1385)[\Lambda\pi^+] + K_S^0 + p$

 $\rightarrow \Lambda + K_S^0 + p + \pi^+ \langle pp \rightarrow K^+(892)[K_S^0\pi^+] + \Lambda + p$

G. Agakishiev *et al.* 2015 Phys.Lett. B 742 242-248.
 R. Munzer *et al.* 2018 Phys. Lett. B 785, 574–580.

The High-Acceptance Di-Electron Spectrometer - HADES

- HADES is a fixed target experiment.
- The detector operates at the SIS18 accelerator providing heavy-ion and proton beams up to 4.5 GeV.
- Good charged particle tracking with the MDC.
- Particle Identification sub detectors:
 - RICH
 - MDC
 - TOF & RPC

Large acceptance - it can detect particles that are emitted at a wide range of angles and energies.

Track reconstruction allows for a clean signal selection by using displaced vertices.

J. Adamczewski-Musch et al. 2021 Eur. Phys. J. A 57 :138

Snehankit Pattnaik, GSI-FFN

FAIRNESS Conference

Exclusive Reaction at HADES

- An acceptance of about 50% for the exclusive reaction.
- The forward detector can enhance signal reconstruction for the high momentum protons.

J. Adamczewski-Musch et al. 2021 Eur. Phys. J. A 57 :138

$$pp \rightarrow \Lambda + K_S^0 + p + \pi^+$$

Snehankit Pattnaik, GSI-FFN

FAIRNESS Conference

Particle Identification and Event Selection

- A total of 39×10^9 events stored from 2022 beamtime.
- A good particle identification for separating pions and protons.
- This reaction requires events with at least 6 tracks.
- Selected 6-track events ~ 1.8×10^7 events.
- Total luminosity (5.86 ±0.09 pb⁻¹) at 4.5 GeV is 60 times higher than the previous proton beam at 3.5 GeV!

Momentum Constraints for Exclusive Channel Selection

- A good parameter for exclusive channel selection.
- An ellipse cut which reduces the background and only exclusive events are remaining.

- Displaced vertex from decay candidates outside the target region.
- Additionally distance of closest approach between decay tracks is used for signal selection.

Snehankit Pattnaik, GSI-FFN

FAIRNESS Conference

$M(\pi^- p)$ vs $M(\pi^+\pi^-)$

[1] M Nekipelov et al 2007 J. Phys. G: Nucl. Part. Phys. 34 627

$M(\pi^{-}p)$ vs $M(\pi^{+}\pi^{-})$

4.5 GeV	Λ	K ⁰ _S		
Mass [MeV/c ²]	1115.6 ± 0.1	495.8 ± 0.3		
Width [MeV/c ²]	2.2 ± 0.1	5.4 ± 0.1		
# Signal events	15560	15020		
Background	4036	4763		
S/B	3.9	3.1		
Significance	109.9	103.5		

Intermediate Resonances

• A clear signature of the decay of the $\Delta^{++} \rightarrow p\pi^+$ observed.

• The process $K^* \rightarrow K^0_{\ S} \pi^+$ clearly observed by the peak at 0.8 GeV^2/c^4 .

• The process $\Sigma^{*+} \rightarrow \Lambda \pi^+$ clearly observed by the peak at 1.9 GeV²/c⁴.

Snehankit Pattnaik, GSI-FFN

FAIRNESS Conference

Simultaneous Fit for Intermediate Resonances

 $pp \to \Lambda + K_S^0 + \Delta^{++}[p\pi^+] \quad pp \to K^+(892)[K_S^0\pi^+] + \Lambda + p \quad pp \to \Sigma(1385)[\Lambda\pi^+] + K_S^0 + p$

- Monte Carlo approach to understand our data to simulate different intermediate resonance.
 - Pluto event generator,
 - Geant3 to replicate the detector response.
- Acceptance x reconstruction efficiency

 $\circ \qquad \boldsymbol{\varepsilon}_{\mathrm{acc x rec}} = 2\%_{0}.$

- A simultaneous incoherent fit is performed for the three different invariant mass distributions.
- The dataset is well described by the combined fit.
- To extract *N** resonance parameters, a partial wave analysis is needed.

To extract spin degrees of freedom for the K^* production [1].

- The fractions from the combined invariant mass fit results are used for describing the angular distribution.
- The combined fit is able to describe the Δ^{++} and the $\Sigma^{+}(1385)$ angular distributions but deviates for the K^* .
- The observed angular distributions show deviations from an isotropic behaviour as used by the simulations.

[1] G. Agakishiev et al. 2015 Phys. Rev. C 92, 024903.

Preliminary Cross Sections and Comparison with Earlier Work

p_p (GeV/c)	σ _{tot} (μb)	NR (%)	Δ ⁺⁺ (%)	Σ ^{*+} (%)	${K^{*}}^{*}$ (%)	N* (%)
3.65 [1]	1.41	65	35	seen	-	-
This work 5.35	50	45	33	18	9	?
6.70 [2]	64	36	36	18	10	seen
7.87 [3]	72.4	5.7	34.2	29.1	15.5	15.6

- Observables from earlier experiments extracted using a one-pion-exchange model assumption [2-3].
- Previous experiments hampered by limited statistics.
- Preliminary cross sections (total and individual contributions) extracted from this work compatible with earlier results [1-3].
- Partial wave analysis necessary to extract couplings and intermediate resonances.

FAIRNESS Conference

Cross section as a function of proton beam momentum, adapted from [1].

M Nekipelov *et al* 2007 J. Phys. G: Nucl. Part. Phys. 34 627.
 Klein S *et al.* 1970 Phys. Rev. D 1 3019.

[3] Firebaugh M et al. 1968 Phys. Rev. 172 1354.

[4] K. Tsushima et al 1999, Phys. Rev. C 59, 369.

Summary

- Current analysis improves our signal extraction and significance.
- Clear observation of Δ⁺⁺, Σ^{*+} (1385) and K^{*+}
 (892) production in this channel.
- Cross section estimate for $\Lambda + K_s + p + \pi^+$ at 4.5 GeV is extracted as 50 µb.
- Slight discrepancy between data and simulations.

Outlook

- → Improve the statistics and resolutions by missing-particle analysis and further exploit kinematic fitters.
- Short term: Extract polarization observables
 via spin-density matrix elements studies of
 K* and self-polarization of Λ weak decay.
- \rightarrow Long term: partial wave analysis.

Thank you