Status and Plans mRICH

Abhishek Anil Deshmukh Bergische Universität Wuppertal

FAIR NExt generation ScientistS, Croatia 25 September 2024

Overview

- What is mCBM?
- What is mRICH?
- You like Aerogel?
- Correlations between detectors
- Buffer conundrum

Original Experiment: CBM

Fixed target Heavy-ion collision experiment

Original Experiment: CBM

uture Fixed target Heavy-ion collision experiment

STS

beam

target

resent Fixed target Heavy-ion collision experiment

Venue: FAIR, Darmstadt

resent Fixed target Heavy-ion collision experiment

Venue: FAIR, Darmstadt

resent Fixed target Heavy-ion collision experiment

Venue: FAIR, Darmstadt

Fixed target Heavy-ion collision experiment

Venue: FAIR, Darmstadt

goals:

- get free-streaming readout running
- Testing of the readout electronics
- General working of detectors at high-rate lacksquare

mRICH

Figure 6.1: Schematic drawing of a side view of the inner mRICH detector. All main parts of the detector as well as the production of Cherenkov photons in the aerogel block are shown.

ref: Adrian Weber

Figure 6.1: Schematic drawing of a side view of the inner mRICH detector. All main parts of the detector as well as the production of Cherenkov photons in the aerogel block are shown.

New data (all panels)

- Run: 2907
- 2.5mm thickness (thick target)
- Au-Au
- Beam intensity: 2.5e+7 Hz
- Events: 4.7E+6

CenterX vs CenterY 20 12 - 10 10 8 Frequency 0 6 -10 --20 0 -10-5 10 5 0 centerX [cm]

No of Hits/Ring comparing with 2.5 years ago

Upper half

Abhishek Anil Deshmukh

Lower half

No of Hits/Ring comparing with 2.5 years ago

Upper half

Comparing mean value across time

 $\mu_o = 12.4$

 $\mu_n = 12.1$

Lower half

 $\mu_n = 11.1$

Correlating TRD hits with mRICH rings

1 TRD hit \Rightarrow Cluster of TRD readouts

nTrdHitPosition					
tries 189	473050				
an x	7.049				
an y	-3.350				
an z	164.7				
l Dev x	25.57				
l Dev y	25.94				
l Dev z	18.68				

Rich Ring \Rightarrow Ring of RICH readouts

Time correlations

T (RICH - TRD) ns

Defined reasonable time cuts

cut index	Tlow	T_{high}
0	-00	oo
1	-200	200
2	40	100
3	<mark>50</mark>	90
4	60	80

Spatial correlation Y

Rich Ring vs Trd Hit Y correlation (Z2T0)

Abhishek Anil Deshmukh

Time cut 3

Spatial correlation X

Anil Deshmukh Abhishek

- 40

- 20

0

Spatial correlation X

Abhishek Anil Deshmukł

Spatial correlation X

Anil Deshmukł Abhishek

Successfully correlated!!

1 word = 32 bits

- Each channel on the PMT is assigned a buffer space of 15 words.
- It takes 2 words to define a hit.
- Each DIRICH has a total buffer space of 499 words.
- So, if each PMT channel can hold 7 hits, there are 64 channels on 1 PMT.
- CRI trigger rate of 3kHz:
 - channels will start loosing data when particle rate > 15kHZ

1 word = 32 bits

- Each channel on the PMT is assigned a buffer space of 15 words.
- It takes 3 words to define a hit.
- Each DIRICH has a total buffer space of 499 words.
- So, if each PMT channel can hold 7 hits, there are 64 channels on 1 PMT.
- CRI trigger rate of 3kHz:
 - channels will start loosing data when particle rate > 15kHZ
- 2 possible solutions
 - Higher CRI rate
 - Larger buffer size

Tested solution: Higher CRI rate

Possible Saturation

2914: Au-Au March 2024

No Saturation (probably)

3096: Ni-Ni May 2024

Summary and Plans for mini-RICH

Summary

- Successfully revived the mini-RICH detector after a two-year hiatus.
- Verified the functionality of the aerogel plates.
- Established correlations between the mini-RICH and mini-TRD systems.
- Identified and addressed buffer management challenges. (partial solution)

Future Plans

- Integrate the mini-RICH detector into the tracking system.
 - Correlations with mini-STS, mini-TOF, etc (almost done)
- Optimize mini-RICH at high interaction rates.
 - Performance
 - Stability (not the biggest problem in CBM)
- Explore alternative buffer management strategies.
- Testing MAPMT \Rightarrow SIPMs (Jesus Pena Rodriguez, Wuppertal)
- Test a new advanced readout DAQ scheme for the DIRICH modules.
 - Under development

• Recompile and test the firmware for more buffer (Simon Reiter, Giessen)

Working on an alignment procedure for mCBM which can be used in CBM later on.

Abhishek Anil Deshmukh

Backup slides

A few random channels

Channel output distribution per packet (0x7010_6)

Frequency

Detector synchronization

- Goal: find a set of time offsets given offsets between detectors along with errors.
- Novel Synchronization Method
- Uses matrix formulation
- Uses Gradient Descent to find a good solution

Simulation

- 1. Start with a random offset vector
- 2. Make correlation matrix -
- 3. Add noise [== f(resolution)] to the co
- 4. find a offset vector
 - a. Linear method (read the first row)
 - b. Matrix method (Gradient Descent)
- 5. Put the Loss of both offset vector in l
 - a. For the original correlation matrix
 - b. For the noisy correlation matrix

 $\mathcal{L} = \sum_{i,j} \frac{C_{ij}}{\sqrt{\sigma_i^2 + \sigma_j^2}}$

, ∧[a1, a2, a3, a4,	a5]					
orrelation matrix.		($\mathcal{C}_{ij} =$: α_j -	$- lpha_i$	
		Var1	Var2	Var3	Var4	v
histogram	Var1	0	-0.08071	0.098675	0.014625	0.0
	Var2	-0.08071	0	-0.10168	0.37678	0.1
	Var3	0.098675	-0.10168	0	0.049934	0.1
	Var4	0.014625	0.37678	0.049934	0.	0.0
	Var5	0.061913	0.103062	0.119171	0.002249	
				the start of the second se		

7 detectors with 6 ns resolution

Abhishek Anil Deshmukh

7 detectors with 6 ns resolution

Abhishek Anil Deshmukh

[a1, a2,

 $\mathcal{L}_1 = \sum_{i,j}$

, a3, a4, a5]						
		-	5 X 5 I	Matrix		
		Var1	Var2	Var3	Var4	
	Var1	0	-0.08071	0.098675	0.014625	0.
	Var2	-0.08071	0	-0.10168	0.37678	0,
	Var3	0.098675	-0.10168	0	0.049934	0.
	Var4	0.014625	0.37678	0.049934	0-	0.
	Var5	0.061913	0.103062	0.119171	0.002249	

$$|C_{ij}| \qquad \mathcal{L}_2 = \sum_{i,j} C_{ij}^2 \qquad \mathcal{L}_3 = \sum_{i,j} \frac{|C_{ij}|}{\sigma_i - \sigma_i}$$

Gradient Descent

Simulation

- 1. Start with a random offset vector
- 2. Make correlation matrix
- 3. Add noise [== f(resolution)] to the col
- 4. find a offset vector
 - a. one-detector-as-reference (read t
 - b. Gradient Descent
- 5. Put the Loss of both offset vector in h
 - a. For the original correlation matrix
 - b. For the noisy correlation matrix

, [a1, a2, a3, a4, a	a5]					
		($\mathcal{T}_{ij} =$: $lpha_j$ -	- α_i	
rrelation matrix.						
		Var1	Var2	Var3	Var4	Va
ine first row) 🔺	Var1	0	-0.08071	0.098675	0.014625	0.06
	Var2	-0.08071	0	-0.10168	0.37678	0.10
nistogram	Var3	0.098675	-0.10168	0	0.049934	0.11
	Var4	0.014625	0.37678	0.049934	0.	0.00
	Var5	0.061913	0.103062	0.119171	0.002249	_

$$\frac{C_{ij}}{\sqrt{\sigma_i^2 + \sigma_j^2}}$$

Simulation: 7 detectors with 6 ns resolution

Abhishek Anil Deshmukh

