

" ϕ meson production from K⁺K⁻ decay channel in p(4.5 GeV)+p using HADES at GSI"

Laboratoire de Physique des 2 Infinis

FAIR next generation scientists - 8th Edition Workshop

Suman Deb Laboratoire De Physique Des 2 Infinite Irène Joliot-Curie, Orsay

Outline

Motivation

Analysis details

Some Initial Results

Summary

Outlook

Motivation : Available data on total cross section of \Phi production

 $\varepsilon = Excess Energy = \sqrt{s} - E_{threshold}$

Motivation : pp -> ppΦ : What Next?

Parameterised including FSI

 $\varepsilon = Excess Energy = \sqrt{s} - E_{threshold}$

Parameterised including FSI

 $\varepsilon = Excess Energy = \sqrt{s} - E_{threshold}$

= Marek Pałka 's Thesis

Motivation: Angular distribution

<u>ANKE</u>

Close to threshold: low relative angular momenta between the two protons and between φ and pp system

 $cos(\Theta_{pp}^p)$: in the pp reference frame relative to the beam direction

 $cos(\Psi_{pp}^{p})$: in the pp reference frame relative to the $\mathbf{\Phi}$ direction

Motivation: Angular distribution

ANKE

Close to threshold: low relative angular momenta between the two protons and between ϕ and pp system

 $cos(\Theta_{pp}^{p})$: in the pp reference frame relative to the beam direction

 $cos(\Psi^p_{pp})$: in the pp reference frame relative to the ${f \Phi}$ direction

Disto results pp 2.85 GeV (3.67 GeV/c) Balestra et al. PRC63 024004 (2001)

After acceptance corrections, ϕ angular distribution is found to be isotropic It is expected as the measurement is close to threshold, (Q=83 MeV)

In S wave relative to the protons

We are at much higher energy (Q=563 MeV), probably higher partial waves

Motivation: Φ meson Angular distribution and production mechanisms

K. Nakayama et al. Phys. Rev. C, 57:1580, 1998.

(b) contributing to meson production in NN reactions.

<u>Calculation of angular distribution of ω-meson</u>

Nucleonic current < Mesonic current : isotropic

Possible similar qualitative behaviour for ϕ ?

Motivation: Φ meson Angular distribution and production mechanisms

K. Nakayama et al. Phys. Rev. C, 57:1580, 1998.

(b) contributing to meson production in NN reactions.

<u>Calculation of angular distribution of ω-meson</u>

Nucleonic current > Mesonic current : Strong Anisotropy Nucleonic current < Mesonic current : isotropic

Possible similar qualitative behaviour for ϕ ?

- Angular distribution of ϕ meson at T_{lab} = 2.85 GeV and $\varepsilon = 83$ MeV
- Angular distribution is fairly flat

Motivation: Φ meson Polarisation

(1). At threshold, outgoing pp pair in ${}^{1}S_{0}$ state:

full alignment between spin projection of Φ and incident pp pair

(2). Alignment expected to be diluted at higher energies, due to the contribution of higher incident partial waves, K⁺-> K⁺/K⁻

Motivation: Φ meson Polarisation

(1). At threshold, outgoing pp pair in ${}^{1}S_{0}$ state:

(2). Alignment expected to be diluted at higher energies, due to the contribution of higher incident partial waves, K⁺-> K⁺/K⁻

<u>Angular distribution of K⁺ in Φ reference frame:</u>

$$W(\Theta_{\phi}^{K}) = \frac{3}{2} [\rho_{11} \sin^{2} \Theta_{\phi}^{K} + \rho_{00} \cos^{2} \Theta_{\phi}^{K}].$$

<u>Theoretical predictions : Titov et al. Phys.Rev.C 59 (1999) 999</u>

 $\rho_{00} = 0.23 + 0.04$, with mixture of ${}^{1}S_{0}$ and ${}^{3}P_{1,2}$

full alignment between spin projection of Φ and incident pp pair

Motivation: Φ meson Polarisation

(1). At threshold, outgoing pp pair in ${}^{1}S_{0}$ state:

(2). Alignment expected to be diluted at higher energies, due to the contribution of higher incident partial waves, K⁺-> K⁺/K⁻

<u>Angular distribution of K⁺ in Φ reference frame:</u>

$$W(\Theta_{\phi}^{K}) = \frac{3}{2} [\rho_{11} \sin^{2} \Theta_{\phi}^{K} + \rho_{00} \cos^{2} \Theta_{\phi}^{K}].$$

<u>Theoretical predictions : Titov et al. Phys.Rev.C 59 (1999) 999</u>

 $\rho_{00} = 0.23 + 0.04$, with mixture of ${}^{1}S_{0}$ and ${}^{3}P_{1,2}$

Extraction of spin density matrix elements via K+/K- angular distribution $\checkmark \Phi$ polarisation

 \checkmark additionnal information on production mechanism

full alignment between spin projection of Φ and incident pp pair

With this motivation, We Proceed Further

Objectives of this work : p(4.5 GeV)+p -> pp\phi[K⁺K⁻]

Inclusive production cross section of ϕ meson

- Angular distribution of φ meson 2
- **φ** Polarisation via kaon angular distribution 3
- **Production Mechanism of φ meson** 4)

We are using HADES and Forward detector @ GSI to achieve this objectives

The HADES Detector - in detail

Experiments (2004-2022)

- Dense and hot hadronic matter studies: C+C (1 and 2 AGeV), Ar+KCI (1.75 AGeV), Au+Au (1.25 AGeV), Ag+Ag (1.65 AGeV).
- Cold matter studies : p+Nb (3.5 GeV), π^-+C/W (1.7 GeV/c), π^-+CH2/C (0.7 GeV/c).
- Elementary reactions: **p+p** (1.25, 2.2, 3.5 and recently 4.5 GeV), **d+p** (1.25 GeV/nucleon).

The HADES Detector - Particle identification for this work

Beam Proton with Kinetic energy 4.5 GeV made to collide with Target Proton

The HADES Detector - Particle identification for my work

$$m = \sqrt{\frac{(1-\beta^2)p^2}{\beta^2}}$$

Outline

Introduction

Motivation

Analysis Strategy

Some Initial Results

Summary

Outlook

Analysis Strategy

Analysis Strategy

This analysis

✓ focuses on both inclusive + exclusive channel ✓ uses both HADES and Forward detector

But this talk

✓ focuses on only <u>Inclusive</u> K+/K- using Energy loss (ITOF and MDC) and momentum dependent mass

Analysis details

Data Analysis ~ 15 x 10⁹ events \$Integrated Luminosity = 6.46 pb⁻¹

Methodology

Simulations

<u>PLUTO: event generator developed by the HADES collaboration</u>

Analysis by Rayane Abou Yassine

This analysis

-

 ${f \Phi}$ identified via hadronic decay channel:

Particle identification

Particle Identification in HADES : Mass vs Momentum

Particle Identification in HADES : Mass vs Momentum: K+ signal

Particle identification: Step-1: Mass vs momentum from Simulation

 $K^{-} = 494 \text{ MeV/c}^{2}$

 $K^{+} = 494 \text{ MeV/c}^{2}$

Particle identification: Step-1: Mass vs momentum from Simulation

Particle Identification in HADES : Step:3-> Using K⁺ Width on DATA

Particle Identification in HADES : Step:4-> particle from (p,dE/dx) of MDC

• Comparison of Energy loss distribution between data and simulation (PLUTO + Geant)

Particle Identification in HADES : Kaon from (p,dE/dx) of MDC

Particle Identification in HADES : Kaon from (p,dE/dx) of iTOF

Particle Identification in HADES : Kaon from (p,dE/dx) of iTOF

Particle Identification in HADES (In Summary)

PID for K⁺ in the analysis

- K⁺ region cut on (p, dE/dx) from MDC and iTOF
- charge > 0
- Mass cut with $\sigma = \pm 2.0$ from simulation

And, PID for K⁻ in the analysis

- Similar to K⁺
- Charge < 0

Invariant Mass

Invariant mass Spectra (M_{inv}[K⁺K⁻]):

Fitting function:

Signal: Voigtian function (Convolution of Breit-Wigner and Gaussian function)

$$\left|\frac{\mathrm{d}N}{\mathrm{d}m_{\mathrm{KK}}} = \frac{A\Gamma}{(2\pi)^{3/2}\sigma} \int_{-\infty}^{\infty} \exp\left[-\frac{(m_{\mathrm{KK}}-m')^2}{2\sigma^2}\right] \frac{1}{(m'-M)^2 + \Gamma^2/4}$$

where, A -> Normalisation factor; M-> Mass; σ -> detector resolution

Background: Quadratic polynomial

We observe a very good significance <u>And number of Φ produced</u>

Angular Distribution of Φ meson using PID from (p, dE/dx)-MDC + mass cut

Invariant mass [K+K-] under different cosine range: Method

Invariant mass [K+K-] under different cosine range: Method

Invariant mass [K+K-] under different cosine range: Method

CosO: [-1.0, -0.75, -0.5, -0.25, 0, 0.75, 0.5, 0.25,1]

Differential angular distribution of Φ meson for different Cos (θ_{Φ}^{cm})

$\cos(\theta_{\Phi}^{cm})$ distribution- after bkg sub. + Normalised by events

$\cos(\theta_{\Phi}^{cm})$ distribution- after bkg sub. + Normalised by events

Efficiency * Acceptance using PLUTO+ Geant

Efficiency*acceptance vs $cos(\theta_{\Phi}^{cm})$ distribution

Differential Cross-section Vs $cos(\theta_{\Phi}^{cm})$ distribution

Summary

- and production angular distribution
- Using the complementaries of HADES detectors like tracking, time of flight and dE/dx technique

Next Step

- Large pionic background PID selection needs to be improved.
- Model dependence of efficiency * acceptance to be checked.
- Analysis of kaon angular distribution in reference frame to measure polarisation

Outlook

- angular distribution of kaons) \longrightarrow information on production mechanism (OZI rule)
- Complementary to HADES data for $\phi \longrightarrow e^+e^-$ measured simultaneously

• Very preliminary analysis of φ production in pp reaction at 4.5 GeV via K+K- decay (HADES data): signal extraction

• Large ϕ yield \longrightarrow very good perspective for extraction of cross section, angular distribution and polarization (via

Thank you for your kind attention

PLUTO+Geant Particle identification: Step-2: Projection of Mass for diff. momentum range K⁺

Projection of mass spectra within momentum range entum-range: 250.00 < p < 400.00 pp@4.5 GeV Fitting-range: 350.00 - 600.00 ----- PLUTO + Gen (pp->o[K⁺K⁻]) 500ł Mean(K⁺): 494.00 — Gaussian for K⁺ Sigma(K*: 16.80 400 300ŀ 2001 100 600 650 700 Mass * charge MeV/c² 450 500 550 300 350 400

500

600

400

100

200

300

800

Mass * charge MeV/c²

900

700

PLUTO+Geant Particle identification: Step-2: Projection of Mass for diff. momentum range

Particle identification: Step-2: Projection of Mass for diff. momentum range K⁺

580

420 440 460 480 500 520 540 560 580 Mass * charge MeV/c²

Particle identification: Step-2: Projection of Mass for diff. momentum range

Affect of Graphical cut (p,dE/dx) on Simulations

рр->рр Φ(К+К-)

Affect of Graphical cut (p,dE/dx) on Simulations

Affect of Graphical cut (p,dE/dx) on Simulations

Energyloss vs Momentum

61