Latest Erlangen Results

A. Lehmann, A. Britting, W. Eyrich, F. Uhlig

- Status of MCP lifetime measurements
- QE scans of PHOTONIS XP85012/A1
- MCP-TOF as particle ID at test beams

Albert Lehmann

Lifetime of former MCP-PMTs

Quantum efficiency reduced by 50% or more at <200 mC/cm²

By far not sufficient for PANDA

Albert Lehmann

Approaches to Increase Lifetime

- Protection layer
 - In front of first MCP layer (older BINP and Hamamatsu)
 - disadvantage: reduction of collection efficiency
 - Between MCP layers (new Hamamatsu)
 - anode region is hermetically sealed from photo cathode region [NIM A629 (2011) 111]
- Improved vacuum + treatment of MCP surfaces
 - Electron scrubbing (older PHOTONIS and new BINP)
 - Atomic layer deposition (new PHOTONIS
- New photo cathode [JINST 6 C12026 (2011)]
 - $Na_2KSb(Cs) + Cs_3Sb$ (new BINP)
 - disadvantage: significantly higher dark count rate

Albert Lehmann

[NIM A639 (2011) 148]

Measurement of MCP Lifetime

Continuous illumination

 460 nm LED at 0.25 to 1 MHz rate attenuated to single photon level
→ 3 to 14 mC/cm²/day

Permanent monitoring

 MCP pulse heights and LED light intensity

Q.E. measurements

- BINP 3548 1359 Positions R10754-01-M16 (1T0117) - meas Photodiode XP85112/A1-HGL 9001223 R10754-01-14
- 300–800 nm wavelength band with monochromator $\Delta \lambda = 1$ nm
- every few days: wavelength scan
- every few weeks: complete surface scan

	Hamamatsu R10754X-01-M16	PHOTONIS XP85112/A1-HGL	BINP 1359	BINP 3548
Integrated Anode Charge (August 6 th) [mC/cm ²]	2086	3021	2033	2275
Max applied current per anode [nA]	45.3	56	315	346
Specified max. DC anode current [nA]	100	47 (64 Chans.) 94 (32 Chans.)	1000	1000
Max Differential Charge [mC/cm ² /d]	14.1	13.4	10.6	11.7
Anode area per pixel (cm ²)	0.32	0.36	2.54	2.54
Number of measurements	73	73	50	50
Measured Channels	8	8 + 2 (unexposed) + MCP-Out	1	1
QE-Scans	7	7	6	5
Illuminated area	100%	50%	100%	100%
Applied voltage using voltage divider (V)	3300	2050	3100 (+100)	3000 (+100)

Albert Lehmann

Gain vs. Integrated Anode Charge

Only moderate gain changes This was different in the former MCP-PMTs !

Albert Lehmann

Darkcount vs. Anode Charge

Only few changes of darkcount rate for BINP and PHOTONIS
Big reduction in Hamamatsu R10754X

Albert Lehmann

Q.E. measured at 372 nm

Q.E.(λ) vs. Integral Anode Charge

Hamamatsu: Q.E. drops significantly above ~1 C/cm2
BINP and PHOTONIS: few or no Q.E. drop, resp.

Albert Lehmann

E Relative Q.E.(λ) vs. Anode Charge

Ham. R10754X-M16: longer wavelengths drop faster than short ones BINP 3548 and PHOTONIS XP85112: no relative Q.E. degradation

Albert Lehmann

Lifetime of Different MCP-PMTs

older BINP and PHOTONIS MCP-PMTs: rapid Q.E. degradation
new PHOTONIS XP85112: still no Q.E. drop at >3 C/cm²

Albert Lehmann

QE Comparison of XP85012

Tube #413 and #414 with significantly lower QE in certain regions

Albert Lehmann

Gain Comparison of XP85012

Tube #347, #410 and #414 with lower gain --> ask Fred

Albert Lehmann

- <u>Goal</u>: particle identification using time-of-flight (TOF) with picosecond resolution
- Equipment:
 - Two XP85012 MCP-PMTs with plexi-glass radiator (10 and 20 mm)
 - Always 4 pixels shorted --> ~ 13x13 mm2 spacial resolution
 - MCPout + 16 pixels --> TOF + tracking
- Setup at CERN (T9):
 - 2 MCP stations ~7.5 m apart
 - position adjustable in x and y
 - reached π/p separation up to ~5 GeV/c

TOF Separation for e/π and p

\leq TOF Separation for e/ π and p

Pions and protons well separated at 5 GeV/c
Time resolution per MCP better than 100 ps

Albert Lehmann

Beam profile with MCP-TOF

- Beam position centered at front MCP-PMT (3.5 GeV/c)
- Beam center slightly shifted and wider at rear MCP-PMT

Albert Lehmann

 Significant increase of lifetime of MCP-PMTs due to the recent improvements in design

- huge step forward !
- equipping the PANDA barrel DIRC with MCP-PMTs is in reach
- ALD technique appears very promising

MCP-TOF seems to work well

- Pion/proton separation up to 5 GeV/c at 7.5 m flight path
- Much better time resolution should be possible with time walk correction (not possible with current setup)
- For pion/kaon separation at >2 GeV/c better time resolution needed