

First studies on time resolution for SciTil

Lukas Gruber, SMI

Stefan Meyer Institute for Subatomic Physics, Vienna

First experimental setup

2x BC408 30 x 30 x 4 mm³ wrapped with Teflon and black tape 3x Hamamatsu SiPM: MPPC S10931-100P 2x Amplifier ("current controlled" preamp with 2 channels each) Strontium source Constant Fraction Discriminator (CFD) LeCroy Oscilloscope (WavePro 735Zi)

Experimental setup

Scintillator

2 channel preamp: 5V supply voltage Current controlled: constant current to correct for temperature variations

Time resolution

Use scintillator on top as start Measure $t_1 - t_{23}$ **TOF resolution: 368 ± 10 ps** (including scintillator, SiPMs, electronics. Assuming two identical layers)

Electronics time jitter still included Problems with SiPM 3 Used high threshold (~ 30 photons) Just a starting point

⁹⁰Sr

Time resolution

Use scintillator on top as start

Measure $t_1 - t_2$

Plot by C. Schwarz, Panda PID meeting, 30.5.2012

Summary & Outlook

- First measurements on the time resolution of a scintillator tile have been performed
- First estimation results in $\sigma \sim 280$ ps for a single channel

Next steps

- Optimization of the experimental setup
- Lower the threshold
- Evaluate electronics jitter
- Test other SiPMs (different pixel size, different vendors,...), preamps, scintillators,...
- Compare measurements with simulation (SLitrani)