

DIRC Prototype Test at MAMI

PANDA XLVI. Collaboration Meeting

Maria Isabel Ferretti JGU – Institut für Kernphysik

Outline

- First DIRC Prototype Test at MAMI — First qualitative Results
- Tasks of the second beam time
- Second DIRC Prototype Test at MAMI
- Data pre analysis
- Summary and Outlook

Reminder: First DIRC Prototype Test at MAMI

PANDA XL. Collaboration Meeting in March 2012

<u>Setup</u>

- One Fused Silica Bar (HxWxL: 35x17x800 mm)
- One MCP Burle xp85012
- Bar and MCP in direct contact coupled with oil (Marcol82)
- One Scintillator as Trigger (behind bar)
- New FEE + TRBv3 readout

Conclusions

- DIRC prototype can be tested at MAMI
- We were able to see Cherenkov Photons
- Effects by changing the incident angle and hitposition are according to our expectations
- Data Acquisition works with TRBv3

Time differences	Calculated [ps]	Measured [ps]
∆ToF _{0°-30°}	936	654 ± 250
∆ToF _{0°-48} °	1580	1780 ± 400
Δ T oF _{30°-48°}	641	1130 ± 430

Timing

Number of Photons

Incident Angle	Calculated Npe	Measured Npe	FWHM/ 2,355
0°	2,9	1,6	1,0
30°	3,4	3,9	2,1
48°	4,3	7,1	2,6

Tasks of the second beam time

• Data acquisition with TRBv3 for at least 3 MCPs

• Test of new Front End Electronics

• Imaging of Cherenkov Rings

Second DIRC Prototype Test at MAMI

- Setup:

- Bar

- + Planoconvex Lens (f= 250 mm; d = 50 mm)
- + Expansion Volume (80 cm x 60 cm x 30 cm)
- 3 MCPs Array → Imaging

- Optical Contact:

-Bar and lens coupled with Oil -MCPs and expansion volume coupled with optical grease

- Readout

- one MCP per TRBv3 board

What have we measured?

- 3 MCPs with 3 TRBv3 Boards
- Triggerles (CTS)
- Different Incident angles
- -Different Airgaps

Incident Angle	dgap [cm]
25° ± 1	10 ± 0,5
28° ± 1	10 ± 0,5
30° ± 1	10 ± 0,5
33° ± 1	10 ± 0,5
30° ± 1	6 ± 0,5

What have we measured?

What have we measured?

Different airgaps

Column

Comparison between Simulation and Measurement

Comparison between Simulation and Measurement

Maria Isabel Ferretti

Summary and Outlook

• <u>Summary:</u>

- DIRC prototype + FEE + TRBv3 succesfully tested (4 MCP readout)
- Different configurations tested
- Structure already in online analysis visible
- Qualitative agreement with the simulation

Next Steps:

 TRB data quantitative analysis (# detected photons, time resolutions, Leading&Trailing Edges vs. Amplitude for pulsed beam runs)

 \rightarrow Unpacker for TRBv3 (HLD Files)

- Feasibility for a test experiment at A1 (PID capabilities)

→New optics and readout volume to facilitate handling (waiting for first results of CERN Beamtime)

Ongoing TRBv3 development

 \rightarrow Increase of readout channels per TRBv3 Board

 \rightarrow Leading&Trailing Edges measurements in same channel

Electronic development

→Integrators on board (Charge over Threshold, first test with new FEE prototype foreseen for \approx end of the year)

Thank You!!

