

Luminosity detector software Background studies summary and Software alignment

Anastasia Karavdina

KPH, Uni Mainz

September 11, 2012

1 Background studies

2 Software alignment

1 Background studies

2 Software alignment

Background studies with DPM

Strategy

- Generation of background with DPM: 0.0018 < θ < 2π rad, 2 · 10⁷ events P_{beam} 1.5, 4.06, 8.9, 11.91, 15 GeV/c
- Track reconstruction in the luminosity detector:
 p
 assumption
- Comparison reconstructed and MC information (for scattered p̄ and bkg signal)

Without HIMster it wouldn't be possible!

Background channels and particles

channel ratio to per	
pp 100	4
$pp\pi^{-}$ 0.8	
$p\bar{p}\pi^{-}\pi^{+}$ 0.63	
$p\bar{p}\pi^{-}\pi^{+}\pi^{0}$ 0.55	
$n\bar{p}\pi^+\pi^0$ 0.46	
$n\bar{p}2\pi^{+}\pi^{-}\pi^{0}$ 0.19	
$n\bar{p}\pi^+2\pi^0$ 0.12	
$p\bar{p}\pi^{-}\pi^{+}\gamma$ 0.06	
$p\bar{p}\pi^{-}\pi^{0}2\gamma$ 0.05	
$p\bar{p}\pi^{-}\pi^{+}3\pi^{0}$ 0.04	
Total 3.72	
particle % of tracks	
p 103.4	
π ⁻ 0.17	
e ⁺ 0.11	
e ⁻ 0.1	
π ⁺ 0.01	
K ⁻ 0.008	
p 0.007	
K ⁺ 0.0002	
90.4% of bkg = \bar{p} tracks	

Background channels and particles

channel	ratio to pel . %	
DD	100	
$p\bar{p}\pi^0$	0.66	
$p\bar{p}\pi^-\pi^+$	0.44	
$n\bar{\rho}\pi^0\pi^+$	0.31	
$p\bar{p}\pi^{0}\pi^{-}\pi^{+}$	0.29	
$n\bar{\rho}\pi^{0}\pi^{-}2\pi^{+}$	0.08	
$n\bar{p}2\pi^{0}\pi^{+}$	0.07	
$p\bar{p}\pi^0 2\gamma$	0.03	
$p\bar{p}\pi^+\pi^-\gamma$	0.02	
$p\bar{p}\Lambda K^+\gamma$	0.02	
Total	2.36	
particle	% of tracks	
- P	102.12	
π-	0.13	
e_	0.07	
e ⁺	0.06	
π^+	0.01	
р	0.008	
K ⁻	0.003	
	0.0004	
Σ^{+}	0.0001	
89.6% of bkg = \bar{p} tracks		

Background channels and particles

	channel	ratio to \bar{p}_{rec}^{el} ,	%
	рĒ	100	
	$p\bar{p}\pi^0$	0.59	
p	$\bar{p}\pi^-\pi^+$	0.29	
r	$n\bar{p}\pi^0\pi^+$	0.21	
рp	$\pi^{0}\pi^{-}\pi^{+}$	0.12	
n	$\bar{p}2\pi^{0}\pi^{+}$	0.03	
npa	$\pi^{0}\pi^{-}2\pi^{+}$	0.02	
	$\bar{p}\Lambda K^+$	0.02	
	$\bar{p}\Lambda K^+\gamma$	0.02	
	$p\bar{p}2\gamma$	0.01	
$p\bar{p}\pi^0K_L$		0.01	
	Total	1.57	
	particle	% of tracks	
	P	101.38	
	π	0.12	
	e	0.05	
	e ⁺	0.04	
	P	0.005	
	π^+	0.005	
	K ⁻	0.002	
	87.7% of bl	$kg = \overline{p} tracks$	

Background channels and particles

		-1	
	channel	ratio to \bar{p}_{rec}^{er} , %	
	Р₽	100	
	$p\bar{p}\pi^0$	0.14	
2	$\pi^{-}2\pi^{+}$	0.04	
2π	$-2\pi^{+}\pi^{0}$	0.03	
π	$-\pi^{+}2\pi^{0}$	0.03	
π	$-\pi^{+}\pi^{0}$	0.02	
2π	$-2\pi^{+}2\pi^{0}$	0.02	
p	$\bar{p}\pi^-\pi^+$	0.01	
r	$\bar{p}\pi^{0}\pi^{+}$	0.009	
π-	$\pi^{+}\pi^{0}2\gamma$	0.005	
π	$-\pi^{+}3\pi^{0'}$	0.005	
21	$\pi^{-}2\pi^{+}\gamma$	0.005	
	$\pi^{-}\pi^{+}$	0.004	
		0.001	
	Total	0.35	
	particle	% of tracks	
	D	100.17	
	π-	0.17	
	e	0.007	
	e+	0.005	
	π^+	0.002	
	n D	0.002	
	к ⁻	0.0002	
	40.8% of b	ka — ā tracks	
	45.070 OF D	ng - pulacks	

Background channels and particles

Bkg hits contribution to tracks How background gives contribution to tracks?

How to distinguish background from signal?

Any cut for background cuts part of signal (and only ${\sim}85\%$ of bkg). Situation even worse for small $P_{\it beam}$

Possible colution: fit signal and bkg together

Anastasia Karavdina — Luminosity detector software

11/34

Kernel Density Estimation

Estimating a Signal In the Presence of an Unknown Background, W. Rolke and A. Lopez (Jan 2012)

"Non-parametric" density estimation

- X_1 , ..., X_n observations from some unknown density f.
- K continuous, non-negative and symmetric function with $K(x) \to 0$ as $x \to \pm \infty$

(Often K is chosen to be p.d. itself: Gaussian density)

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K(\frac{x-X_i}{h})$$

h − tuning parameter called bandwidth.
 (in regions where true density changes slowly h should be large than in regions where f changes rapidly)
 → adaptive bandwidth h_x

Semi-parametric fitting

Function for maximum likelihood

 $f(x; \alpha, \theta) = (1 - \alpha)f_B(x) + \alpha f_S(x; \theta)$

for $f_B(x)$ (estimation of bandwidth and density) one need pure sample of background events :(

RooFit contains RooKeysPdf class:

A one-dimensional kernel estimation p.d.f which model the distribution of an arbitrary input dataset as a superposition of Gaussian kernels

:)

Anastasia Karavdina — Luminosity detector software

14/34

Seems small addition signal fraction to bkg sample doesn't change shape too much

1 Background studies

2 Software alignment

Anastasia Karavdina — Luminosity detector software

16/34

Hit reconstruction change in Imd hit reconstruction

Hits position (x,y,z) reconstruction from digital information

Each sensors has 6 d.o.f: 3 translation (δ_r) and 3 rotation (δ_{α}) δ_r =0, 20, 50, 100, 150, 200, 250, 300, 350, 400 μm δ_{α} =0, **3**, 6, **9** mrad

 P_{beam} =11.91 GeV/c: for $\delta_r \sim 100 \ \mu m$ ($\delta_{\alpha} = 0 \ mrad$) θ resolution become 5 times worse!

Background studies Software alignment Impact of misalignment UNING DELTAT MAN HELMHOLTZ ASSOCIATION on θ resolution $\delta_r = 0.\mu \text{ m } \delta_- = 0.\text{mrad}$ $\delta_r = 5, \mu m \delta_n = 0, mrad$ $\delta_r = 10, \mu \text{ m} \delta_r = 0, \text{mrad}$ 600 Entries 9710 Entries 9728 Entries 9728 500 50 500 Mean -1.469e-06 Mean 1.156e-06 Mean -3.032e-06 RMS 0.0001478 RMS 0.0001541 RMS 0.0001453 400 40 400 30 300 300 200 200 200 10 100F 100 -0.001 -8.001 -8.001 0.0005 -0.0005 0 0.001 -0.0005 0 0.001 -0.0005 0 0.001 δθ rad δθ rad δA rad $\delta_1 = 20 \mu m \delta_2 = 0, mrad$ $\delta_1 = 50, \mu m \delta_2 = 0, mrad$ $\delta_r = 100 \,\mu \,m \,\delta_r = 0, mrad$ Entries 9728 9728 Entries Entries 250 300 Mean 7.355e-06 Mean 3.047e-05 8.351e-05 Mean 40 RMS 0.0001742 250 RMS 0.0002722 200 RMS 0.0004659 300 200 150 150

Anastasia Karavdina — Luminosity detector software

0.001 0.002

Entries

Mean

RMS

8A rad

5974

0.004424

0.004775

- Fit a large number of tracks and plot the residuals for each sub-detector
- The mean value of each residual distribution should then be centered on the misalignment value
- Correct the sub-detector coordinates from this value
- Fit the track again, plot the residuals,...
 And so on until the residuals central values are stabilized at 0.

Iterations are based on biased track fit results Then, even if the method converges, it could leads to biased misalignment values

two different types of fitted parameters:

- Related to the track properties determined by a fit. different for each tracks → LOCAL parameters
- Parameters which are depending on the detector position. Alignment parameters → GLOBAL parameters

To get a good accuracy significant number of tracks is needed Size of the system equation: $n_{tot} = n_{loc} \cdot n_{tracks} + n_{gl}$

Example

10000 tracks with 4 parameters \rightarrow 40000 equations!

Software alignment How to deal with large matrix equation?

Millepede algorithm

- Matrix is divided on sub-matrices of dimensions n_{loc} * n_{loc}
- C++ implementation is done for LHCb VELO (Knossos)

Track parametrization

$$\begin{cases} x = a \cdot z + b \\ y = c \cdot z + d \end{cases}$$

Residuals parametrization

$$\begin{cases} \epsilon_x = -\Delta_x + y_{hit} \cdot \Delta_\gamma + a \cdot (\Delta_z + x_{hit} \cdot \Delta_\beta + y_{hit} \cdot \Delta_\alpha) \\ \epsilon_y = -\Delta_y - x_{hit} \cdot \Delta_\gamma + c \cdot (\Delta_z + x_{hit} \cdot \Delta_\beta + y_{hit} \cdot \Delta_\alpha) \end{cases}$$

3 translations $(\Delta_x, \Delta_y, \Delta_z)$ and 3 rotation $(\Delta_\alpha, \Delta_\beta, \Delta_\gamma)$ around $\chi_{\models}y, z_{\downarrow} \models \chi_{\models}y$

Background studies Software alignment Alignment Results Residuals between reconstructed hit and track

Ideal case

Misaligned sensors

Background studies Software alignment Alignment Results Residuals between reconstructed hit and track

Ideal case

Misaligned sensors

Background studies Software alignment Sensors alignment for translation misalignment $\sim 100 \mu m$

Without sensors misalignment resolution 0.1361 mrad

Sensors alignment sensitivity to misalignment scale (11.91 GeV/c)

Sensors alignment sensitivity to misalignment scale (11.91 GeV/c)

Sensors alignment sensitivity to misalignment scale (<u>11.91 GeV/c</u>)

Sensors alignment sensitivity to misalignment scale (11.91 GeV/c)

Sensors alignment sensitivity to misalignment scale (1.5 GeV/c)

Sensors alignment sensitivity to misalignment scale (1.5 GeV/c)

27/34

Sensors alignment sensitivity to misalignment scale (1.5 GeV/c)

Sensors alignment sensitivity to misalignment scale (1.5 GeV/c)

Effect of track statistics

Number of required tracks strongly depends on mechanical precision

- Simulation on HIMster: DPM (θ_{min}=0.1), 2 · 10⁷ events, lumi + beam pipe,full reconstruction P_{beam}=15, 11.91, 8.9 GeV/c, 4.06 and 1.5 GeV/c
- Main background particle for high energy is p
 from different channels!
- Amount of background is less then 5%
- Kernel Density Estimation = future background description?
- Preliminary results for software alignment based on fitting the residuals:

works up to 300 $\mu \rm m$ for translation, 6 mrad for rotation. (11.91 GeV/c)

channel	# of tracks	ratio to p ^{rec} , %	particles
pp	511285	100	$\bar{p}(511285)$
$p\bar{p}\pi^0$	4080	0.8	$\bar{p}(3949), \pi^{-}(131)$
$p\bar{p}\pi^-\pi^+$	3234	0.63	$\bar{p}(3073), \pi^{-}(152), \pi^{+}(9)$
$p\bar{p}\pi^-\pi^+\pi^0$	2804	0.55	$\bar{p}(2708), \pi^{-}(96)$
$n\bar{p}\pi^+\pi^0$	2359	0.46	$\bar{p}(2216), \pi^{-}(140), \pi^{+}(3)$
$n\bar{p}2\pi^{+}\pi^{-}\pi^{0}$	982	0.19	$\bar{p}(958), \pi^{-}(23), \pi^{+}(1)$
$n\bar{p}\pi^+2\pi^0$	613	0.12	$\bar{p}(581), \pi^{-}(31), \pi^{+}(1)$
$p\bar{p}\pi^{-}\pi^{+}\gamma$	289	0.06	$\bar{p}(280), \pi^{-}(8), \pi^{+}(1)$
$p\bar{p}\pi^{-}\pi^{0}2\gamma$	232	0.05	$\bar{p}(215), \pi^{-}(2), e^{+}(8), e^{-}(6)$
$p\bar{p}\pi^{-}\pi^{+}3\pi^{0}$	205	0.04	$\bar{p}(200), \pi^{-}(4), e^{-}(1)$
$p\bar{p}2\pi^{-}2\pi^{+}\pi^{0}$	182	0.04	$\bar{p}(178), \pi^{-}(4)$
Total	19000	3.72	

particle	# of tracks
Ē	528452
π^{-}	864
e ⁺	569
e	524
π^+	72
K-	40
р	37
κ^+	1

17167 p come from bkg channels (90.4% of bkg)

Background channels and particles

channel	# of tracks	ratio to p ^{rec} , %	particles
рĒ	474902	100	p(474902)
$p\bar{p}\pi^0$	3155	0.66	$\bar{p}(3058), \pi^{-}(93)$
$p\bar{p}\pi^{-}\pi^{+}$	2084	0.44	$\bar{p}(1987), \pi^{-}(87)$
$n\bar{p}\pi^0\pi^+$	1462	0.31	$\bar{p}(1386), \pi^{-}(72)$
$p\bar{p}\pi^0\pi^-\pi^+$	1392	0.29	$\bar{p}(1351), \pi^{-}(41)$
$n\bar{p}\pi^{0}\pi^{-}2\pi^{+}$	358	0.08	$\bar{p}(343), \pi^{-}(15)$
$n\bar{p}2\pi^0\pi^+$	311	0.07	$\bar{p}(295), \pi^{-}(16)$
$p\bar{p}\pi^0 2\gamma$	119	0.03	$\bar{p}(107), e^{-}(7), e^{+}(5)$
$p\bar{p}\pi^+\pi^-\gamma$	116	0.02	$\bar{p}(113), \pi^{-}(3)$
$p\bar{p}\Lambda K^+\gamma$	112	0.02	$\bar{p}(110), K^{-}(2)$
$p\bar{p}2\gamma$	111	0.02	$\bar{p}(111)$
Total	11191	2.36	

particle	# of tracks
p	484978
π^{-}	609
e	317
e ⁺	280
π^+	50
р	37
K-	14
K+	2
Σ^+	1

10022 \bar{p} come from bkg channels (89.6% of bkg)

Background channels and particles 8.9 GeV/c

channel	# of tracks	ratio to p ^{rec} , %	particles
pp	384225	100	p(384225)
$p\bar{p}\pi^0$	2281	0.59	$\bar{p}(2205), \pi^{-}(75), \pi^{+}(1)$
$p\bar{p}\pi^{-}\pi^{+}$	1097	0.29	$\bar{p}(1066), \pi^{-}(30), \pi^{+}(1)$
$n\bar{p}\pi^0\pi^+$	806	0.21	$\bar{p}(775), \pi^{-}(29), \pi^{+}(2)$
$p\bar{p}\pi^0\pi^-\pi^+$	465	0.12	$\bar{p}(456), \pi^{-}(9)$
$n\bar{p}2\pi^0\pi^+$	126	0.03	$\bar{p}(126), \pi^{-}(5)$
$n\bar{p}\pi^{0}\pi^{-}2\pi^{+}$	96	0.02	$\bar{p}(95), \pi^{-}(1)$
$\bar{p}\Lambda K^+$	65	0.02	$\bar{p}(64), K^{-}(1)$
$\bar{p}\Lambda K^+\gamma$	63	0.02	$\bar{p}(62), K^{-}(1)$
$p\bar{p}2\gamma$	48	0.01	p(48)
$p\bar{p}\pi^0K_L$	48	0.01	p(48)
Total	6046	1.57	

particle	# of tracks
Ē	389526
π^{-}	466
e	197
e ⁺	153
р	20
π^+	19
K-	8

5301 \bar{p} come from bkg channels (87.7% of bkg)

Background channels and particles 4.06 GeV/c

channel	# of tracks	ratio to p ^{rec} , %	particles
pp	615808	100	$\bar{p}(615808)$
$p\bar{p}\pi^0$	847	0.14	$\bar{p}(838), \pi^{-}(8), p(1)$
$2\pi^{-}2\pi^{+}$	230	0.04	$\pi^{-}(230)$
$2\pi^{-}2\pi^{+}\pi^{0}$	180	0.03	$\pi^{-}(179), \pi^{+}(1)$
$\pi^{-}\pi^{+}2\pi^{0}$	171	0.03	$\pi^{-}(171)$
$\pi^{-}\pi^{+}\pi^{0}$	130	0.02	$\pi^{-}(127), \pi^{+}(3)$
$2\pi^{-}2\pi^{+}2\pi^{0}$	87	0.02	$\pi^{-}(86), \pi^{+}(1)$
$p\bar{p}\pi^{-}\pi^{+}$	79	0.01	$\bar{p}(76), p(1), \pi^{-}(1), \pi^{+}(1)$
$n\bar{p}\pi^0\pi^+$	58	0.009	p(58)
$\pi^{-}\pi^{+}\pi^{0}2\gamma$	32	0.005	$\pi^{-}(31), \pi^{+}(1)$
$\pi^{-}\pi^{+}3\pi^{0}$	29	0.005	$\pi^{-}(29)$
$2\pi^{-}2\pi^{+}\gamma$	29	0.005	π ⁻ (29)
$\pi^{-}\pi^{+}$	22	0.004	$\pi^{-}(22)$
Total	2158	0.35	

1075 p̄ come from bkg channels (49.8% of bkg)

particle	# of tracks
Ē	616883
π-	1059
e	42
e ⁺	33
π^+	14
р	12

HEY!

What's going on with data stat (pbarp number of tracks should increase with decreasing of energy!)

channel	# of tracks	ratio to p ^{rec} , %	particles
рp	2.86707e+06	100	$\bar{p}(2.86707e+06)$
$\pi^+\pi^-$	31	0.001	$\pi^{-}(29), \pi^{+}(2)$
$\pi^{+}\pi^{-}\pi^{0}$	141	0.005	$\pi^{-}(137), \pi^{+}(4)$
$\pi^{+}\pi^{-}2\pi^{0}$	81	0.003	$\pi^{-}(78), \pi^{+}(3)$
$2\pi^{+}2\pi^{-}$	53	0.002	$\pi^{-}(53)$
$2\pi^+2\pi^-\pi^0$	73	0.003	$\pi^{-}(68), \pi^{+}(5)$
$p\bar{p}\pi^0$	31	0.001	$\bar{p}(30), \pi^+(1)$
$p\bar{p}\pi^+\pi^-$	35	0.001	$\bar{p}(6), \pi^{-}(15), \pi^{+}(14)$
2 <i>p</i> pπ ⁻	81	0.001	$\bar{p}(15), p(42), \pi^{-}(24)$
Total	717	0.025	

particle	# of tracks	
Ē	2.86749e+06	
π^{-}	522	
e ⁺	5	
e	9	
π^+	53	
р	81	

420 \bar{p} come from bkg channels (58.6% of bkg)