Fluctuation Analysis at HADES

19/02/2024 EMMI – STAR/CBM-eTOF Workshop | R. Holzmann (GSI/HADES)

Experimental challenges in particle fluctuation measurements:

- achieve large event statistics
- correct for acceptance/efficiency effects
- control purity of event sample, e.g. correct for pile-up
- correct for volume fluctuations caused by the centrality selection
 - \rightarrow Main focus of this talk

Particle ID in HADES

Hadron ID based on

- ToF
- momentum
- dE/dx

for details see PRC 102, 024914 (2020), EPJA 56 (2020)

Proton distributions in Au+Au at $\sqrt{s} = 2.41 \ GeV$

for details see PRC 102, 024914 (2020), EPJA 56 (2020)

Centrality selection with the Forward Wall

cross section of 1 of 6 HADES sectors

4x4, 8x8, 16x16 cm² tiles

Centrality estimators in the HADES experiment

to avoid autocorrelations!

Volume fluctuations in an independant-source model

Literature: V. Skokov, B. Friman & K. Redlich PRC 88 (2013), A. Rustamov et al. NPA 960 (2017), Sugiura, Nonaka & Esumi PRC 100 (2019), Esumi & Nonaka NIM A987 (2021)

Averaging the proton number moments over volume

$$< N_{prot}^{j} > = \int P(V) \sum_{v} N_{prot}^{j} P(N_{prot} | V) dV$$
$$< N_{prot}^{j} >_{V}$$

adds volume contributions to the observed proton cumulants $\kappa_i[N]$:

$$\kappa_{1}[N] = \langle N_{w} \rangle \kappa_{1}[n] = \langle N_{w} \rangle \langle n \rangle = \langle N \rangle$$

$$\kappa_{2}[N] = \langle N_{w} \rangle \kappa_{2}[n] + \langle n \rangle^{2} \kappa_{2}[N_{w}] = \bar{\kappa}_{2}[N] + \langle N \rangle^{2} \frac{\kappa_{2}[N_{w}]}{\langle N_{w} \rangle^{2}}$$

$$(2)$$

$$\kappa_{3}[N] = \langle N_{w} \rangle \kappa_{3}[n] + 3 \langle n \rangle \kappa_{2}[n] \kappa_{2}[N_{w}] + \langle n \rangle^{3} \kappa_{3}[N_{w}] = \bar{\kappa}_{3}[N] + 3 \langle N \rangle \bar{\kappa}_{2}[N] \frac{\kappa_{2}[N_{w}]}{\langle N_{w} \rangle^{2}} + \langle N \rangle^{3} \frac{\kappa_{3}[N_{w}]}{\langle N_{w} \rangle^{3}}$$

$$(3)$$

$$\kappa_{4}[N] = \langle N_{w} \rangle \kappa_{4}[n] + 4 \langle n \rangle \kappa_{3}[n] \kappa_{2}[N_{w}] + 3\kappa_{2}^{2}[n] \kappa_{2}[N_{w}] + 6 \langle n \rangle^{2} \kappa_{2}[n] \kappa_{3}[N_{w}] + \langle n \rangle^{4} \kappa_{4}[N_{w}]$$

$$= \bar{\kappa}_{4}[N] + 4 \langle N \rangle \bar{\kappa}_{3}[N] \frac{\kappa_{2}[N_{w}]}{\langle N_{w} \rangle^{2}} + 3\bar{\kappa}_{2}^{2}[N] \frac{\kappa_{2}[N_{w}]}{\langle N_{w} \rangle^{2}} + 6 \langle N \rangle^{2} \bar{\kappa}_{2}[N] \frac{\kappa_{3}[N_{w}]}{\langle N_{w} \rangle^{3}} + \langle N \rangle^{4} \frac{\kappa_{4}[N_{w}]}{\langle N_{w} \rangle^{4}}$$

$$(4)$$

where the $\bar{\kappa}_j[N]$ are the proton cumulants at fixed volume, the $\kappa_j[N]$ are the observed cumulants, and the $V_j \equiv \kappa_j[N_w]$ characterize the volume fluctuations.

Illustration of the VF problem with STAR data

Higher-order cumulants and correlation functions of proton multiplicity distributions in $\sqrt{s_{NN}} = 3$ GeV Au+Au collisions at the RHIC STAR experiment

see also Abdallah et al. PRL 128 (2022)

Volume corrections can be

- very large
- strongly model-dependent

➔ A data-driven approach would be preferrable !

FIG. 14. Experimental results on centrality dependence of cumulants (left panels) and cumulant ratios (right panels) up to sixth order of the proton multiplicity distributions in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV. The open squares are data without VF correction while red circles and blue triangles are results with VF correction with N_{part} distributions from Glauber and UrQMD models, respectively.

$$N_{hit} \rightarrow N_{part}$$
 deconvolution using Glauber MC

 \rightarrow do a Bayesian reconstruction of the N_{part} distribution

Bayesian reconstruction of centrality

PHYSICAL REVIEW C 97, 014905 (2018)

Relating centrality to impact parameter in nucleus-nucleus collisions

Sruthy Jyothi Das,^{1,2} Giuliano Giacalone,³ Pierre-Amaury Monard,¹ and Jean-Yves Ollitrault¹

PHYSICAL REVIEW C 98, 024902 (2018)

Editors' Suggestion

Reconstructing the impact parameter of proton-nucleus and nucleus-nucleus collisions

Rudolph Rogly,^{1,2} Giuliano Giacalone,¹ and Jean-Yves Ollitrault¹

PHYSICAL REVIEW C 104, 034609 (2021)

Model independent reconstruction of impact parameter distributions for intermediate energy heavy ion collisions

J. D. Frankland ,^{1,*} D. Gruyer,² E. Bonnet,³ B. Borderie,⁴ R. Bougault,² A. Chbihi,¹ J. E. Ducret,¹ D. Durand,² Q. Fable,² M. Henri,¹ J. Lemarié,¹ N. Le Neindre,² I. Lombardo,⁵ O. Lopez,² L. Manduci,^{2,6} M. Pârlog,^{2,7} J. Quicray,² G. Verde,^{5,8} E. Vient,² and M. Vigilante⁹ (INDRA Collaboration)

Ollitrault et al.

- validated with simulations and applied to LHC data

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, **Detectors and Associated Equipment**

Volume 987, 21 January 2021, 164802 Reconstructing particle number distributions with convoluting volume fluctuations

ShinIchi Esumi a 🖂 , Kana Nakagawa a, Toshihiro Nonaka a b 🙎 🖂

use Bayes' theorem

P(B|A) = P(A|B) P(B)/P(A)

Setting $A = N_{hit}$, $B = N_{part}$ with

- $P(B|A) \leftrightarrow \text{prob of } N_{\text{part}} \text{ for given } N_{\text{hit}} \leftarrow \text{to be reconstructed}$
- $P(A|B) \leftrightarrow \text{prob of } N_{hit} \text{ for given } N_{part} \leftarrow Glauber \text{ fit to } N_{hit} \text{ data}$
- $P(A) \leftrightarrow \min \text{ bias } N_{\text{bit}} \text{ distribution}$
- P(B) \leftrightarrow min bias N_{part} distribution

- 🗲 data
 - ← Glauber

minimal model (Glauber MC)

Nuclear Physics A Volume 1034, June 2023, 122641

Anar's novel approach: A model-free procedure to correct for volume fluctuations in E-by-E analyses of particle multiplicities

Anar Rustamov a 🔉 🖾 , Romain Holzmann a, Joachim Stroth b a c

Main idea: 1) Use event mixing to remove (critical) correlations from the data, allowing to extract volume cumulants from the mixed-evt particle cumulants $\kappa_n^{mix}[N]$

2) Correct the un-mixed particle cumulants $\kappa_n[N]$ for volume effects

Basic assumptions: 1) independent-source production and 2) binomial efficiencies

Event-mixing scheme:

2nd-order volume cumulant reconstructed from mixed evts in a toy model simulation:

19/02/2024 EMMI – STAR/CBM-eTOF Workshop | R. Holzmann

Refinements and extension to higher orders

V. Koch, A. Rustamov, R. Holzmann & J. Stroth

With Volker working out the full math & combinatorics, we

- could set the method on a <u>firm ground</u>
- went from using cumulants to using <u>factorial cumulants</u>
- generalized the formalism to <u>higher orders</u>
- realized that the mixing is (formally) not mandatory (but may help)

→ An extended paper on these matters will soon appear in arXiv

Using factorial cumulants to obtain $\kappa_j[N_w]$

Volume-affected factorial cumulants are expressed as:

$$\begin{split} C_1[N] &= \langle N_w \rangle \, C_1[n] = \langle N_w \rangle \, \langle n \rangle = \langle N \rangle \\ C_2[N] &= \bar{C}_2[N] + \langle N \rangle^2 \, \frac{\kappa_2[N_w]}{\langle N_w \rangle^2} \\ C_3[N] &= \bar{C}_3[N] + 3 \, \langle N \rangle \, \bar{C}_2[N] \frac{\kappa_2[N_w]}{\langle N_w \rangle^2} + \langle N \rangle^3 \, \frac{\kappa_3[N_w]}{\langle N_w \rangle^3} \\ C_4[N] &= \bar{C}_4[N] + 4 \, \langle N \rangle \, \bar{C}_3[N] \frac{\kappa_2[N_w]}{\langle N_w \rangle^2} + 3 \bar{C}_2^2[N] \frac{\kappa_2[N_w]}{\langle N_w \rangle^2} + 6 \, \langle N \rangle^2 \, \bar{C}_2[N] \frac{\kappa_3[N_w]}{\langle N_w \rangle^3} + \langle N \rangle^4 \, \frac{\kappa_4[N_w]}{\langle N_w \rangle^4} \end{split}$$

 $\bar{C}_k[N]$ are the factorial cumulants at <u>fixed volume</u>, with $\bar{C}_k[N] = \langle N_w \rangle C_k[n]$

In general, the volume cumulants $\kappa_i[N_w]$ can then be obtained from

$$\begin{aligned} \frac{\kappa_2[N_w]}{\langle N_w \rangle^2} &= \frac{C_2[M] - \bar{C}_2[M]}{\langle M \rangle^2} \\ \frac{\kappa_3[N_w]}{\langle N_w \rangle^3} &= -3\frac{\bar{C}_2[M]}{\langle M \rangle^2}\frac{\kappa_2[N_w]}{\langle N_w \rangle^2} + \frac{C_3[M] - \bar{C}_3[M]}{\langle M \rangle^3} \\ \frac{\kappa_4[N_w]}{\langle N_w \rangle^4} &= -6\frac{\bar{C}_2[M]}{\langle M \rangle^2}\frac{\kappa_3[N_w]}{\langle N_w \rangle^3} - \frac{4\bar{C}_3[M]\langle M \rangle + 3\bar{C}_2[M]^2}{\langle M \rangle^4}\frac{\kappa_2[N_w]}{\langle N_w \rangle^2} + \frac{C_4[M] - \bar{C}_4[M]}{\langle M \rangle^4} \end{aligned}$$

 \rightarrow Note that these expressions are invariant w.r.t. efficiency/acceptance effects

19/02/2024 EMMI – STAR/CBM-eTOF Workshop | R. Holzmann

Calculate your own cumulants with Python

Code developed by Anar Rustamov

Formulae for participant/volume fluctuations and their corrections						
Select cumulant order 6 C Derive formulae for Volume fluctuations Create a .cc file Derive						
$Pure cumulants$ Deriving formulas for volume fluctuations for order: 6 $\frac{1}{k_1[A] = \langle W \rangle^* \langle a \rangle}$ $k_2[A] = \langle W \rangle^* k_2[a] + \langle a \rangle^{**} 2^* k_2[W]$ $k_3[A] = \langle W \rangle^* k_2[a] + \langle a \rangle^{**} 2^* k_2[W]$ $k_3[A] = \langle W \rangle^* k_3[a] + \langle a \rangle^{**} 2^* k_2[W] + 3^* \langle a \rangle^{**} 2^* k_2[W]^* k_2[a]$ $k_4[A] = \langle W \rangle^* k_4[a] + \langle a \rangle^{**} 3^* k_4[W] + 6^* \langle a \rangle^{**} 2^* k_2[a]^* k_3[W] + 4^* \langle a \rangle^* k_2[W]^* k_3[a] + 3^* k_2[W]^* k_2[a]^{**} 2^* k_2[W]^* k_2[a]^{**} 2^* k_3[W] + 10^* \langle a \rangle^{**} 3^* k_2[W]^* k_3[a] + 3^* \langle a \rangle^* k_2[a]^{**} 2^* k_3[W] + 10^* \langle a \rangle^{**} 3^* k_2[a]^* k_3[W] + 4^* \langle a \rangle^* 15^* \langle a \rangle^* k_2[a]^{**} 2^* k_3[W] + 10^* k_2[a]^* k_2[a]^* k_3[a] + 5^* \langle a \rangle^* k_2[a]^* k_2[a]^{**} 2^* k_3[W] + 10^* k_2[a]^* k_2[a]^* k_3[a]^* k_4[W] + 45^* \langle a \rangle^{**} 2^* k_2[a]^{**} 2^* k_3[W] + 15^* \langle a \rangle^{**} 4^* k_2[a]^* k_2[a]^* k_2[W] + k_2[a]^* k_3[a]^* k_4[W] + 45^* \langle a \rangle^{**} 2^* k_2[a]^* k_3[W] + k_4[a] + 15^* \langle a \rangle^{**} 4^* k_2[a]^* k_2[W] + k_3[a]^* k_4[W] + 45^* \langle a \rangle^{**} 2^* k_2[a]^* k_3[W] + k_4[a] + 15^* \langle a \rangle^{**} 4^* k_2[a]^* k_2[W] + k_3[a]^* k_4[W] + 45^* \langle a \rangle^{**} 2^* k_3[W] + k_4[a] + 15^* \langle a \rangle^{**} 4^* k_2[a]^* k_2[W] + k_3[a]^* k_4[W] + 45^* \langle a \rangle^{**} 2^* k_3[W] + k_4[a] + 15^* \langle a \rangle^{**} 4^* k_2[a]^* k_3[W] + k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_4[a] + 15^* k_2[W] + k_2[a]^* k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_4[a] + 10^* k_2[W] + k_3[a]^{**} 2 + 2^* k_3[W] + k_3[A]^{**} 2 + 2^* k_3[W$	• Mixed cumulants Deriving formulas for volume fluctuations for order: 6 cov11[AB] = <w>*cov11[ab] + <a>**k_2[W] cov12[AB] = <w>*cov12[ab] + <a>**k_2[W] cov13[AB] = <w>*cov13[ab] + <a>***2*k_3[W] + <a>*k_2[W]*k_2[b] + 2**cov11[ab]*k_2[W] cov13[AB] = <w>*cov13[ab] + <a>***2*k_3[W] + 3*<a>*k_2[W] + 3*<ca>*k_2[b]*k_3[W] + <a>*k_2[b]*k_3[W] + <a>*k_2[b]*k_3[W] + <a>*k_2[b]*k_3[W] + <a>*k_2[b]*k_3[W] + <a>*k_2[b]*k_3[W] + <a>*k_2[b]**2*k_3[W] + <a>*k_2[b]**2*k_3[W] + <a>*k_2[b]**2*k_3[W] + <a>*k_2[b]**2*k_3[W] + <a>*k_2[b]**2*k_3[W] + <a>*k_2[D]**2*k_3[W] + <a>*k_2[W] + <a>*k</ca></w></w></w></w>					
A Bratana B H Laward M Kata I Olarit						

Toy model: Glauber MC + Negative Binomial

Events are generated in a toy model using Glauber MC for centrality sampling and a Negative Binomial distribution (NBD) for particle generation

$$P(n;\mu,k) = \frac{\Gamma(n+k)}{\Gamma(n+1)\Gamma(k)} \left(\frac{\mu}{k}\right)^n \left(\frac{\mu}{k} + 1\right)^{-(n+k)}$$

$$n_s = fN_w + (1-f)N_{coll}$$

$$\begin{split} \kappa_1^{NBD} &= \mu, \\ \kappa_2^{NBD} &= \frac{\mu(k+\mu)}{k}, \\ \kappa_3^{NBD} &= \frac{\mu(k+\mu)(k+2\mu)}{k^2}, \\ \kappa_4^{NBD} &= \frac{\mu(k+\mu)(k^2+6k\mu+6\mu^2)}{k^3} \end{split}$$

Parameters from NBD fits to charged track distributions:

experiments	μ	k	f
HADES	0.24	20.34	1
STAR	0.31	5.66	0.94
ALICE	29.3	1.6	0.8

 \rightarrow HADES distribution is close to Poisson

$$\begin{split} \kappa_1^{NBD}(HADES) &= 0.24 \\ \kappa_2^{NBD}(HADES) &= 0.2428 \\ \kappa_3^{NBD}(HADES) &= 0.2486 \\ \kappa_4^{NBD}(HADES) &= 0.2602 \end{split}$$

Toy model calculations for HADES

realized by A. Rustamov

Toy model calculations for HADES

realized by A. Rustamov

 \rightarrow In data, Δ_i is quite small and can furthermore be estimated from NBD fits to track distribution!

and intrinsic correlations are small in this example!

30-40

centrality[%]

30-40

20-30

A more sophisticated model with resonances

realized by A. Rustamov

Pions and protons from Δ decays:

Extract the volume cumulants from the track nb cumulants $\kappa_j[M]$ and correct the observed proton cumulants $\kappa_j[N]$ to find $\bar{\kappa}_j[N] = \kappa_i^{corr}[N] + \Delta_j$

→ Proton cumulants can still be reconstructed within ≈10%

A more sophisticated model with resonances

realized by A. Rustamov

Pions and protons from Δ decays:

Extract the volume cumulants from the track nb cumulants $\kappa_i[M]$ and correct the observed proton cumulants κ_i [N] to find $\bar{\kappa}_i[N] = \kappa_i^{corr}$ k,[p] $\kappa_2[p]/\kappa_2[p]$ 80 25 $= \Delta_n[p]/\overline{\kappa}_n[p] [\%]$ 60 ¥ Δ₄[p]/╦₄[p] 20 40 ¥ Δ₃[p]/╦₃[p] $\bigstar \Delta_2[p]/\overline{\kappa}_2[p]$ 20 15 0 bias 10 k₃[p]/k₃[p]_{sim} 8 5 6 0^L 4 10-20 20-30 0-10 30-40 centrality[%] 2 -2^l 0^L 0-10 10-20 0-10 20-30 20-30 30-40 10-20 30-40 centrality[%] centrality[%]

→ In data, Δ_j can also be estimated from NBD fits to track distribution!

Open questions / Possible extensions

- Is the independent-source assumption always correct? Anyhow, what is the nature of these sources at low energies? N_{part}?
- Can we also handle non-binomial efficiencies?
- We need to validate the method on experimental data now.
 For HADES, this is work in progress by M. Nabroth, A. Rustamov et al.
- Could be interesting for other expts as well

Extra slides

Proton fluctuation signal purity

relative contribution

HADES ad-hoc approach: N_{hit} as a proxy for N_{part}

IQMD simulation shows that N_{hit} is proportional to N_{part}

→ use N_{hit} as proxy for vol. flucs. i.e. rescale & adjust the v_n

Observed N_{hit} distributions (selected on FW) Reconstructed N_{part} distributions

19/02/2024 EMMI – STAR/CBM-eTOF Workshop | R. Holzmann

True Poissonian process: $N_{hit} = Poisson(\lambda N_{part})$

Applying **total cumulance** to $X = N_{hit} = Poisson(X|_{Z=Npart})$ we obtain a relation between the cumulants of N_{hit} and N_{part} :

$$\kappa_1[N_{hit}] = \lambda \; \langle N_{part}
angle = \lambda \; \kappa_1[N_{part}] \; .$$

$$\kappa_2[N_{hit}] = \lambda \; \kappa_1[N_{part}] + \lambda^2 \; \kappa_2[N_{part}]$$

See also Broniowski & Olszewski, PRC95 (2017)

$$\kappa_3[N_{hit}] = \lambda \; \kappa_1[N_{part}] + 3\lambda^2 \; \kappa_2[N_{part}] + \lambda^3 \; \kappa_3[N_{part}]$$

$$\kappa_{4}[N_{hit}] = \lambda \kappa_{1}[N_{part}] + 7\lambda^{2} \kappa_{2}[N_{part}] + 6\lambda^{3} \kappa_{3}[N_{part}] + \lambda^{4} \kappa_{4}[N_{part}]$$

$$\vdots$$
In general one has:
$$\kappa_{n}[N_{hit}] = \sum_{i=1}^{n} \lambda^{i} S_{2}(n, i) \kappa_{i}[N_{part}]$$
(1)
With the inverse:
$$\kappa_{n}[N_{part}] = \sum_{i=1}^{n} \lambda^{-i} S_{1}(n, i) \kappa_{i}[N_{hit}]$$
(2)