Flow phenomena at high nuclear densities with HADES

Behruz Kardan

for the HADES Collaboration

EMMI Workshop Probing dense baryonic matter with hadrons II: FAIR Phase-0

20th Februar 2024

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Outline

- Dense nuclear matter and collective phenomena
- HADES and experimental data Au+Au 1.23 AGeV
- Directed v₁, elliptic v₂, and higher flow harmonics (v₃, v₄, v₅, v₆) of protons, deuterons and tritons
- Parameterization and scaling properties
- Model comparisons

Nuclear matter under Extreme Conditions

What is the nature of matter?

And what are the properties of nuclear matter under the most extreme conditions?

Equation-of-state of dense matter in the $\int_{1}^{\frac{1}{2}}$ *universe* and in the *laboratory*

Neutron Star Merger

Observation via gravitational waves **GW170817**: B.P. Abott et al. (LIGO + VIRGO) PRL 119 (2017) 1611001

Heavy-ion Collision

Behruz Kardan

Collective Effects Flow Phenomenology

Emission relative to event plane

In-medium interactions and nuclear stopping \rightarrow buildup of non-uniform pressure gradients provides accelerating forces in different directions

Access to medium properties, e.g. viscosity, equation-of-state

Fourier-decomposition

of the triple differential invariant cross section

$$E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} \left(1 + 2\sum_{n=1}^{\infty} v_n(p_t, y)\cos(n\phi)\right)$$
$$\phi = (\varphi - \Psi_{RP})$$

Extraction of azimuthal moments v_n

$$v_n(p_t, y) = \langle \cos(n\phi) \rangle$$

Behruz Kardan

High Acceptance Di-Electron Spectrometer

 High interaction rates and statistics 	
 5 weeks (558.3 hours) of Au+Au data taking with 7 × 10⁹ recorded events 	
Beam intensities 1.2 - 2.2 x 10 ⁶	MDC 🥆
 Large acceptance in 6 identical sectors 	
 Symmetric azimuthal coverage 	Magnet co
18°-85° in polar angle	
 Low-mass tracking system 	MDC 🥆
 4 Planes of multi-wire chambers with Mini-Drift Cells (MDC) 	
6 Coils of superconducting toroidal magnets	RICH -
 Particle Identification 	
Time-of-Flight (TOF and RPC)	
Energy loss in the MDC	Beam т
• Forward Wall	I
 Reaction plane reconstruction 	

Particle Identification

$\beta\gamma$ 10⁶ Entries 10⁵ 10⁴ 10^{3} 10 Au+Au 1.23 AGeV 10⁻¹ **10**⁻¹ p/Z (GeV/c)

Time-of-Flight (TOF and RPC)

 $\beta \gamma m/Z = p/Z$

Energy loss in the MDC

Event Plane Reconstruction

Event plane of 1st-Order from Projectile spectators in Forward Wall

- Charge-Weighting according energy loss in scintillators
- Correction of non-uniformities
- EP-resolution via sub-event method

EMMI Workshop - GSI - 20th February 2024

Compilation of World Data Energy-Dependence

smash Analysis Results 2.2 UrQMD J. Steinheimer et al, EPJC 82 (2022) 911 **pBUU** P. Danielewicz, PRC 51 (1995) 716

Compilation of world data

Good agreement of mean transverse mass <m_t>-m₀, integrated directed flow dv₁/dy and elliptic flow v_2

Out-of-Plane v₂

Long spectator passing time at HADES energy

 $T_{passing} \approx T_{expansion} \implies$ "Squeeze-out"

Compilation of World Data Energy-Dependence

Compilation of world data New Star FXT v3 data and E877 upper limit

Collective Effects Results on v1, v2, v3 and v4 for Protons, Deuterons and Tritons

Results on v1, v2, v3 and v4 for Protons, Deuterons and Tritons

Results on v1, v2, v3 and v4 for Protons, Deuterons and Tritons

Results on v1, v2, v3 and v4 for Protons, Deuterons and Tritons

EMMI Workshop - GSI - 20th February 2024

Results on v1, v2, v3 and v4 for Protons, Deuterons and Tritons

EMMI Workshop - GSI - 20th February 2024

Results on $v_1 - v_6$ for Protons, Deuterons and Tritons

Behruz Kardan

EMMI Workshop - GSI - 20th February 2024

"Ideal fluid scaling" Relation between v_2 and v_4

Scaling properties Prediction for ideal fluid:

Slightly higher values (~ 0.6) expected in more realistic scenario

Observed ratios for p, d and t Independent of pt and centrality Close to predicted value of ~ 0.6

Confirmed by transport models

Hydro-like matter at SIS energies?

 $v_4(p_t)/v_2^2(p_t) = 1/2$

P.F. Kolb, PRC 67 (2003) 031902 N. Borghini and J.-Y. Oliitrault, PLB **642** (2006) 227 C. Gombeaud and J.-Y. Ollitrault, PRC 81 (2010) 014901

J. Wang et al., PRC 90 (2014) 054601 IQMD P. Hillmann et al., J.Phys. G 47 (2020) 5, 055101 UrQMD Justin Mohs et al., PRC **105** (2022) 034906 **SMASH**

Parameterization Rapidity-Dependence

Polynomial function:

 $v_{n, odd}(y_{\rm cm}) = v_{n1} y_{\rm cm} + v_{n3} y_{\rm cm}^3$ $v_{n,\,even}(y_{\rm cm}) = v_{n0} + v_{n2} y_{\rm cm}^2$

Trigonometric functions:

$$v_n^{odd}(y_{\rm cm}) = v_n^{\rm sat} \cdot \sin(y_{\rm cm}/y_{tp} \cdot \pi/2)$$
$$v_n^{even}(y_{\rm cm}) = v_n^{\rm sat} \cdot \cos(y_{\rm cm}/y_{zi} \cdot \pi/2)$$

PRL 125 (2020) 262301

EMMI Workshop - GSI - 20th February 2024

Allows to reconstruct a full 3D-picture of the emission pattern in momentum space

Complex evolution of shape as function of rapidity determined by flow coefficients $v_1 - v_6$

$$1 + 2\sum_{n=1}^{\infty} v_n(y_{cm}) \cos n(\phi - \psi_{RP})$$

First Proposed in S. Voloshin and Y. Zhang Z.Phys. C70 (1996) 665-672

Behruz Kardan

φ=0

Parameterization pt-Dependence

$$v_n(p_t) = \frac{\int_0^{2\pi} \cos(n\phi_s) \ I_n(\alpha_t(\phi_s)) \ K_1(\beta_t(\phi_s)) \ d\phi_s}{\int_0^{2\pi} \ I_0(\alpha_t(\phi_s)) \ K_1(\beta_t(\phi_s)) \ d\phi_s} \qquad \rho(\phi_s) = \rho_0(1 + 2\rho_n \ \cos(n\phi_s))$$

Bessel functions:

$$v_n(p_t) = v_n^{\inf} I_n(p_t/\chi) / I_0(p_t/\chi)$$

Behruz Kardan

Trigonometric functions:

 $v_n(p_t) = v_n^{\text{sat}} \cdot \tanh(p_t/p_0)^a$

Global Parameterization Rapidity- and pt-Dependence

Combined Trigonometric functions (y, pt):

$$v_n^{odd}(p_t, y_{cm}) = v_n^{sat} \cdot \tanh(p_t/p_0)^a \cdot \sin(y_{cm}/y_{tp} \cdot \pi/2)$$

$$v_n^{even}(p_t, y_{cm}) = v_n^{sat} \cdot \tanh(p_t/p_0)^a \cdot \cos(y_{cm}/y_{zi} \cdot \pi/2)$$

Behruz Kardan

Simultaneous description of the rapidity and transverse momentum dependence with only 4 Parameter for each Centrality class, Particle Type and Flow Harmonic

Nucleon Coalescence Scaling Properties of v₂ at Mid-Rapidity

Scaling of v₂ and p_t with nuclear mass number A

Inclusion of higher order terms

Works well for the dominant flow coefficient as expected in simple coalescence picture

Odd flow coefficients vanish at midrapidity and v_4 contribution is negligible

Approximation for small v_n

 $v_{n,A}(A p_t) = A v_n(p_t)$

 $v_{n,A=2}(A p_t) =$

 $v_{n,A=3}(A p_t) =$

$$= 2 v_n(p_t) \frac{1}{1 + 2 v_n^2(p_t)}$$
$$= 3 v_n(p_t) \frac{1 + v_n^2(p_t)}{1 + 6 v_n^2(p_t)}$$

D. Molnar and S.A. Voloshin PRL 91 (2003) 092301 P.F. Kolb et al., PRC 69 (2004) 051901

Nucleon Coalescence Scaling Properties of v₄ at Mid-Rapidity

Scaling of v₄ and p_t with nuclear mass number A

Inclusion of higher order terms and contribution of v_2

Works as expected in simple coalescence picture if contribution of dominant flow coefficient is included

Approximation for small v_4 with v_2 contribution:

$$v_{n,A}(A p_t) = A^2 v_n(p_t)$$

 $v_{4,A=2}(A p_t) =$

 $v_{4,A=3}(A p_t) =$

$$= 4 v_4(p_t) \frac{1}{1 + 4 v_4(p_t) + 2 v_4^2(p_t)}$$
$$= 9 v_4(p_t) \frac{1}{1 + 12 v_4(p_t) + 6 v_4^2(p_t)}$$

assuming: $v_4(p_t)/v_2^2(p_t) = 1/2$

D. Molnar and S.A. Voloshin PRL 91 (2003) 092301 P.F. Kolb et al., PRC 69 (2004) 051901

Geometry Scaling Elliptic Flow V₂

Behruz Kardan

Geometry Scaling Quadrangular Flow v₄

Scaling with initial eccentricities Calculated for overlap zone with Glauber MC

 $v_4/\langle \varepsilon_2 \rangle^2$ almost independent of centrality and pt ($v_4/\langle \varepsilon_4 \rangle$ is not) \rightarrow Fixed relation between v₂ and v₄ (different to high energies)

Behruz Kardan

EMMI Workshop - GSI - 20th February 2024

Model Comparisons to Proton Data

Determination of EOS

New level of precision - multi differential Additional information from higher orders

Models:

JAM 1.9 NS3 (hard EOS, mom.-indep.) JAM 1.9 MD1 (hard EOS, mom.-dep.) JAM 1.9 MD4 (soft EOS, mom.dep.) UrQMD 3.4 (hard EOS, mom.-indep.) GiBUU Skyrme 12 (soft EOS)

Model	EOS	$K \; ({ m MeV})$	m^*/m	mom-de
JAM 1.90591	NS1	380	0.83	no
	MD1	380	0.65	yes
	MD4	210	0.83	yes
UrQMD 3.4	Hard	380		no
GiBUU 2019 (patch7)	Skyrme 12	240	0.75	no

Conclusions

Overall trend reasonably described, but no model works everywhere

Several systematic deviations can be linked to different implementation in transport codes

For unified description a consistent modelling of light nuclei formation is essential

HADES, arXiv:2208.02740

Model Comparisons to Proton Data

Behruz Kardan

Behruz Kardan

Event-wise Flow Correlations

Slope of the Triangular Flow v3 A strong sensitivity to the EoS is seen

UrQMD Model Simulations: T. Reichert et al. EPJ C 82 (2022) 510

Behruz Kardan

Quadrangular Flow v₄

The magnitude of v4 seems to follow an almost quadratic dependence

Not corrected the underlying **Multiplicity Fluctuations**

Conclusions

General Parameterisation

 Phenomenological approach based on hydrodynamic inspired Blast Wave model

Scaling Properties

- Scaling relation between flow coefficients Hydro-like matter at SIS energies?
- Geometrical Scaling to initial overlap eccentricities

Behruz Kardan

EMMI Workshop - GSI - 20th February 2024

 Scaling of v2 and v4 according simple "nucleon" coalescence" via momentum addition

 Multi-differential analysis including higher orders New level of precision

Nucleon Coalescence

Model Comparison

Consistent modelling of light nuclei formation

General Parameterisation

0.05

-0.1

• V_E × 2

Outlook

Event-wise Flow Fluctuations Correlation and Relation between Flow Harmonics

Next Steps towards EOS Detailed comparisons and sensitivity to model parameter space \rightarrow Bayesian analysis

System-Size and Energy-dependence Au+Au at 1.23 AGeV (2012) Ag+Ag at 1.23 and 1.58 AGeV (2019)

SIS Beam Energy Scan C+C at 0.8 AGeV (Feb. 2024) Au+Au at 0.2 - 0.8 AGeV (March 2024)

HADES Collaboration

Thank you for your attention!

Equation of State of Dense Matter

• EoS is the *equilibrium* property of Hydrodynamical simulations

EMMI Workshop - GSI - 20th February 2024

Equation of State of Dense Matter Momentum Dependence of the mean fields

Momentum dependence characterized by **m*=0.7m**

Properties of Dense Nuclear Matter Shear viscosity

- transport models
- section are constrained by stopping and flow observables

Motivation Flow and Event Shapes

Behruz Kardan

Landau scenario total stopping

Bjorken scenario partial stopping initial longitudinal flow

Hagedon-Myers scenario (similar to "firestreak" model) stopping dependent on nuclear density partial stoped matter moves with different rapidities

EMMI Workshop - GSI - 20th February 2024

Event Plane Determination

Event Plane Resolution

Behruz Kardan

EMMI Workshop - GSI - 20th February 2024

Systematic Uncertainties Validation and Consistency Checks

Sources of uncertainties

- Track selection and PID
- Occupancy correction
- Non-uniform acceptance

Toy MC study

Influence of the incomplete acceptance and a non-uniform event-plane distribution

Consistency checks:

- Measurement symmetry with respect to mid-rapidity
- Zero-crossing of odd harmonics at y_{cm}=0
- Vanishing residual sine-terms
- Time-dependent systematic effects

Reversed field polarity

Comparison with flow coefficients from the full data set

EMMI Workshop - GSI - 20th February 2024

Other Ratio-Scalings? Protons and light nuclei

Behruz Kardan

Elliptic Flow v₂ Integrated and pt-Dependence

Integrated v2 (pt-weighted) can give similar values even underling yieldand v2-spectra are different

Behruz Kardan

Elliptic Flow V₂ Energy- and pt-Dependence

FOPI II

Au+Au proton $|y_0| < 0.4$

EMMI Workshop - GSI - 20th February 2024

Elliptic Flow v₂ Energy- and pt-Dependence

EOS:

J. Kintner, Squeeze-Out and Flow of Pions from 1.5 GeV/Nucleon Au+Au. Dissertation, University of California Davis (1993) KaoS AuAu: D. Brill, Azimutal anisotrope Teilchenemission in relativistischen Schwerionenstössen. Dissertation, Goethe-University, 1993 KaoS BiBi: D. Brill, et al., Z. Phys. A355, 61 (1996).

FOPI:

Nucl.Phys. A876 (2012) 1-60