EOS as deduced from HICs and astrophysics: status and perspectives

GSİ

W. Trautmann, GSI Helmholtzzentrum 64291 Darmstadt, Germany



image: eso 1733k ESO VLT and VIMOS NGC 4993 130 Mio light years

Probing dense baryonic matter with hadrons II: FAIR Phase-0 February 19-21, 2024

#### GW170817

image: eso 1733k ESO VLT and VIMOS NGC 4993 130 Mio light years

Probing dense baryonic matter with hadrons II: FAIR Phase-0 February 19-21, 2024

#### NuSym23: find talks at https://indico.gsi.de/event/17017/overview



## on Nuclear Symmetry Energy

Darmstadt (Germany), September 18-22, 2023

The nuclear equation-of-state and the symmetry energy in laboratory experiments, astrophysical observations, and microscopic theories

#### Reed Essick at NuSym22 in Catania



#### Reed Essick at NuSym22 in Catania



 $R_{1.4}p_{sat}^{-1/4} = 9.5 \pm 0.5 => R_{1.4} = 12.9 \pm 0.6 \text{ km} \pm 0.7 \text{ km} (68\%)$ (stat.) (correl.) for ASY-EOS: Russotto+, PRC 94, 034608 (2016) for correlation: Lattimer, arXiv:2308.08001

#### Combining heavy-ion experiments, astrophysical observations, and nuclear theory

#### Article

Nature 606, 276 (2022)

# Constraining neutron-star matter with microscopic and macroscopic collisions

| https://doi.org/10.1038/s41586-022-04750-w | Sabrina Huth <sup>1,2,13</sup> , Peter T. H. Pang <sup>3,4,13</sup> , Ingo Tews <sup>5</sup> , Tim Dietrich <sup>6,7</sup> , Arnaud Le Fèvre <sup>8</sup> ,<br>Achim Schwenk <sup>1,2,9</sup> , Wolfgang Trautmann <sup>8</sup> , Kshitij Agarwal <sup>10</sup> , Mattia Bulla <sup>11</sup> ,<br>Michael W. Coughlin <sup>12</sup> & Chris Van Den Broeck <sup>3,4</sup> |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Received: 13 July 2021                     |                                                                                                                                                                                                                                                                                                                                                                           |
| Accepted: 11 April 2022                    |                                                                                                                                                                                                                                                                                                                                                                           |
| Published online: 8 June 2022              |                                                                                                                                                                                                                                                                                                                                                                           |
| Open access                                |                                                                                                                                                                                                                                                                                                                                                                           |

#### 11 authors from nuclear theory, heavy ion reactions, and astrophysics

Bayesian inference as in Dietrich+, Science 370, 1450 (2020)

#### Huth et al., Nature 606, 276 (2022)

#### the prior: $R_{1.4} = 11.96 \pm 1.18 \text{ km}$ (final: $12.01 \pm 0.78 \text{ km}$ )



sections with  $c_s = 0$  to allow for phase transition

#### $\chi$ EFT prior + HIC + astro



Huth+ Nature 606

# adopted: $\chi$ EFT up to 1.5 n<sub>sat</sub>, natural prior, c<sub>s</sub> extension, n/ch sensitivity, proton fraction 0.05 at n<sub>sat</sub>

R<sub>1.4</sub> = 12.01 +0.78 -0.77 km (95%) 12.06 +1.13 -1.18 km (HIC only) 11.94 +0.79 -0.78 km (astro only) 11.96 +1.18 -1.15 km (prior: χEFT & M<sub>max</sub> >1.9 M<sub>sun</sub>)

 12.56 +1.07 -1.01
 xEFT up to 1.

 12.08 +1.18 -0.94
 uniform prior

 12.05 +0.83 -0.79
 polytrope exte

 12.00 +0.75 -0.80
 inflated HIC er

 12.02 +0.78 -0.76
 n/p sensitivity

 12.21 +0.73 -0.76
 1 GeV sensitiv

 12.04 +0.72 -0.71
 1 GeV & half H

 12.00 +0.77 -0.77
 proton fraction

 11.97 +0.77 -0.74
 Taylor expansitivity

 11.94 +0.87 -0.83
 radius of 6620

#### xEFT up to 1.0 n<sub>sat</sub> ← uniform prior polytrope extension inflated HIC errors n/p sensitivity 1 GeV sensitivity 1 GeV & half HIC error proton fraction 0–0.1 Taylor expansion for SNM radius of 6620 (NICER) not used

#### NuSym23: find talks at https://indico.gsi.de/event/17017/overview



and microscopic theories

#### Jocelyn Read at NuSym23



#### LIGO, Virgo and KAGRA Observing run plans



LIGO: O4 Observing run started on 24 May 2023 O4a ended 16 January 2024 LIGO+Virgo commence observing run O4b on 3 April 2024 KAGRA expected to join O4b before the end of O4

#### Carolyn Raithel at NuSym23

# Tidal deformability "doppelgängers"

- Very different EOSs (large differences in pressure above  $\rho_{\rm sat}$  )
- But nearly *identical* tidal deformability curves, across the full range of observed masses



Non-Neutron Star Doppelgängers: Barack Obama (left) and Ilham Anas (right), a photographer from Java [Reuters]



Raithel & Most 2023 (PRL, PRD)

# **How to break the degeneracy?** Solution #1: Incorporate X-ray radius measurements



Even for very strict doppelgängers, the M-R relations can still differ by up to ~a few 100 m

Raithel & Most 2023 (PRL, PRD)

Solution #2: Incorporate further nuclear input at low-to-intermediate densities

#### Sebastien Guillot at NuSym23



Salmi et al. 2024 & Dittmann et al. 2024 (both to be submitted) looked at PSR J0740+6620 with a lot more NICER data

### NICER on the ISS



Neutron-star Interior Composition Explorer 56 X-ray concentrators (0.2-12 keV, **100 ns**) time resolved X-ray emissions of neutron stars

December 10, 2019, ApJL: **PSR J0030+0451**: 4.9 ms 1.4 M<sub>sun</sub>, 1060 l.y. **12.7 ± 1.1 km** (Riley et al., 68%) **13.0 ± 1.2 km** (Miller et al., 68%)

September 10, 2021 **PSR J0740+6620**: 2.08  $M_{sun}$ , 3700 l.y. **12.39 +1.30 -0.98 km** (68%) Riley+, ApJL 918, L27 **13.7 + 2.6 - 1.5 km** (68%) Miller+ ApJL 918, L28 with XMM-Newton, GW170817 **R**<sub>1.4</sub> = **12.45 ± 0.65 km** (5% at 1  $\sigma$ )

source:NASA

001987

#### The Nuclear EoS from experiments and Astronomical Observations



DLL: Danielewicz, Lacey, Lynch, Science DFT: Density Functional Theory

#### The Nuclear EoS from experiments and Astronomical Observations



#### The Nuclear EoS from experiments and Astronomical Observations

presented by Betty Tsang for Tommy Tsang (figure taken from talk)



#### Tim Dietrich at NuSym23

#### **Science Cases of Neutron Star Research**



#### NuSym23: find talks at https://indico.gsi.de/event/17017/overview



# on Nuclear Symmetry Energy

Darmstadt (Germany), September 18-22, 2023

The nuclear equation-of-state and the symmetry energy in laboratory experiments, astrophysical observations, and microscopic theories

#### NuSym24: first announcement



NUSYM24 – XII<sup>th</sup> International Symposium on Nuclear Symmetry Energy September 09-13, Caen – France

#### status: Koehn+, arXiv:2402.04172 (6 Feb 2024)



prior: 100 000 from metamodeling and speed of sound extension to 25 n sat

#### status: Koehn+, arXiv:2402.04172 (6 Feb 2024)



#### ASY-EOS II – observables and expectations



#### ASY-EOS II proposal at FAIR (arXiv:2105.09233)





sensitivity to **higher density** with n/p flow at higher incident energy and new instrumentation NeuLAND 2.5x2.5x1.2 m<sup>3</sup> DK

#### Jerzy Łukasik at NuSym23



#### NuSym23: find talks at https://indico.gsi.de/event/17017/overview



Betty Tsang at NuSym23

#### **Conclusion:** Comprehensive cold EOS is in sight

#### In past decade

- Great new instruments: LIGO/VIRGO & NICER ⇒great measurements.
- Advances which connect experimental constraints for symmetric matter and asymmetric matter to neutron star.

#### **Near Future**

#### HIC(SN

- Improvements/breakthroughs in transport model simulations.
- New neutron star measurements (O4) & update of symmetric matter constraints from Hades, BES ...
- Improvement of symmetry energy constraints around 1.5 to 3 rho\_0 (FRIB, FRIB400, RIKEN, SIS).
- NEW facility (FRIB400?, FAIR), NEW experiments and NEW
   Ptheories to explore the golden era of neutron star physics with HIC.

#### perspectives: Carolyn Raithel at NuSym23

#### Detectability of the post-merger gravitational waves



Next-generation of GW detectors will be  $\sim 10x$  more sensitive

Evans et al. (2109.09882)

Interesting post-merger NS physics

#### perspectives: Jocelyn Read at NuSym23



The reach of the Cosmic Explorer 40 km observatory for compact binary mergers as a function of total binary mass and redshift at various signal/noise (SNR) thresholds