Soft deconfinement & quark saturation

Toru Kojo

(Tohoku Univ., GPPU)

Refs) Baym-Hatsuda-TK-Powell-Song-Takatsuka, "QHC", review on neutron stars (2018)

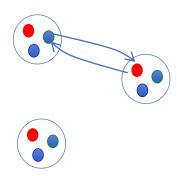
Fukushima-TK-Weise, "Hard deconfinement and soft-surface delocalization ..." PRD (2020)

TK, "Stiffening of matter in quark-hadron continuity" PRD (2021)

Fujimoto-TK-McLerran, "IdylliQ matter model" arXiv: 2306.04304 [nucl-th]

State of matter: overview

- · few meson exchange
- nucleons only



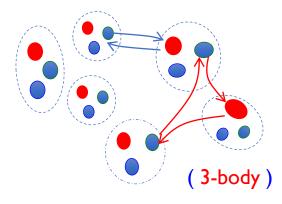
ab-initio nuclear cal.

laboratory experiments

steady progress

~ I.4 M_⊚

- · many-quark exchange
- structural change,...
- hyperons, ∠, ...

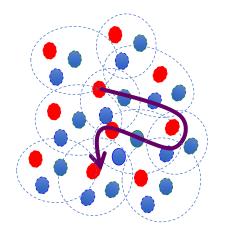


most difficult

(d.o.f??)

[Masuda+ '12; TK+ '14]

- Baryons overlap
- · Quark Fermi sea



strongly correlated

(d.o.f : quasi-particles??)

not explored well

[Freedman-McLerran, Kurkela+, Fujimoto+...]

 n_B

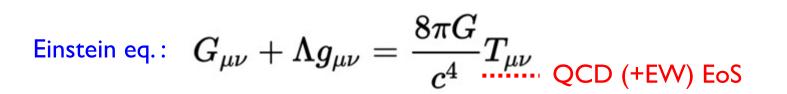
Hints from NS

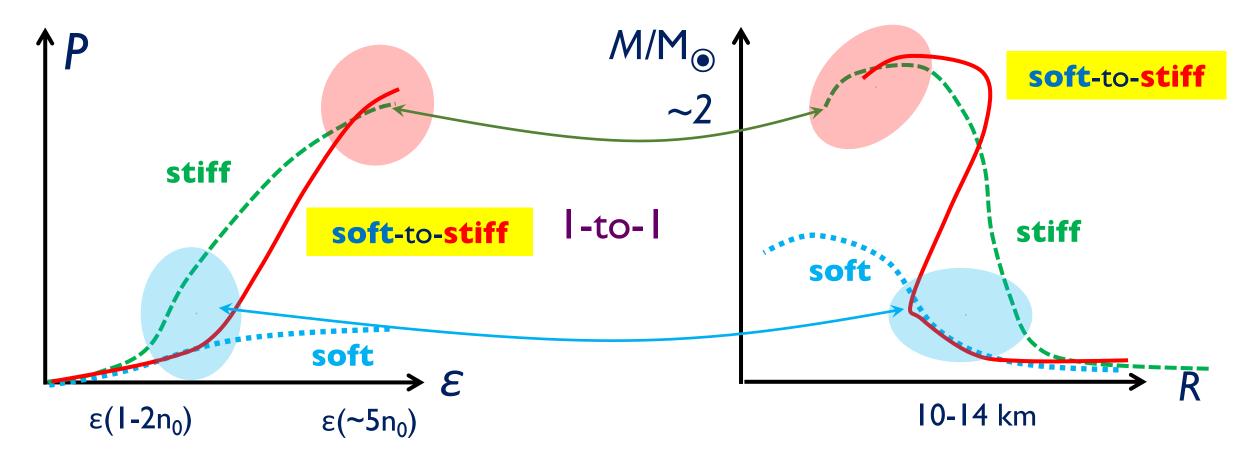
~ 5n₀

~ 40n₀

~ 2n₀

EoS & Neutron Star M-R relation

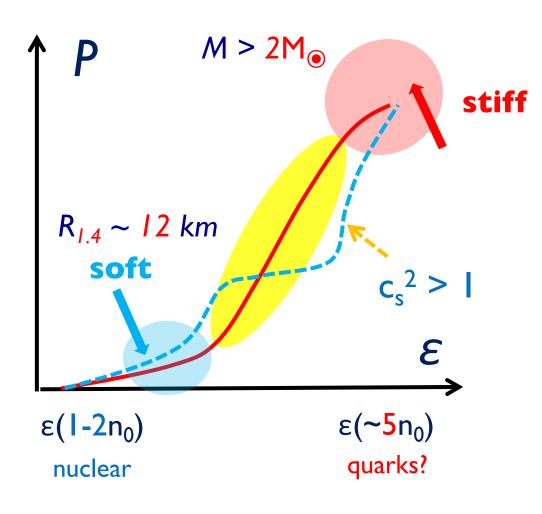


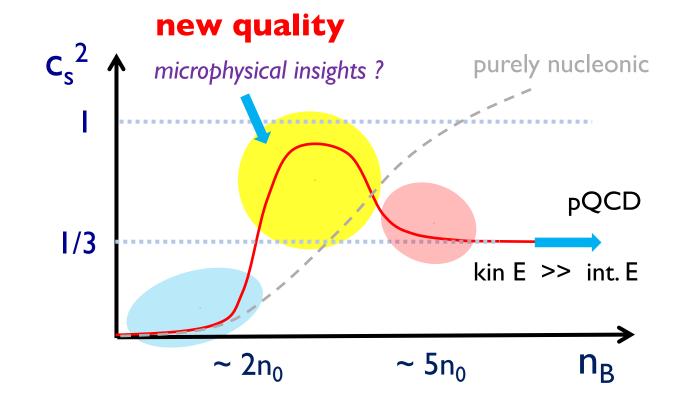


Soft to stiff is challenging:

sound velocity: $c_s^2 = dP/d\epsilon < I$ (causality)

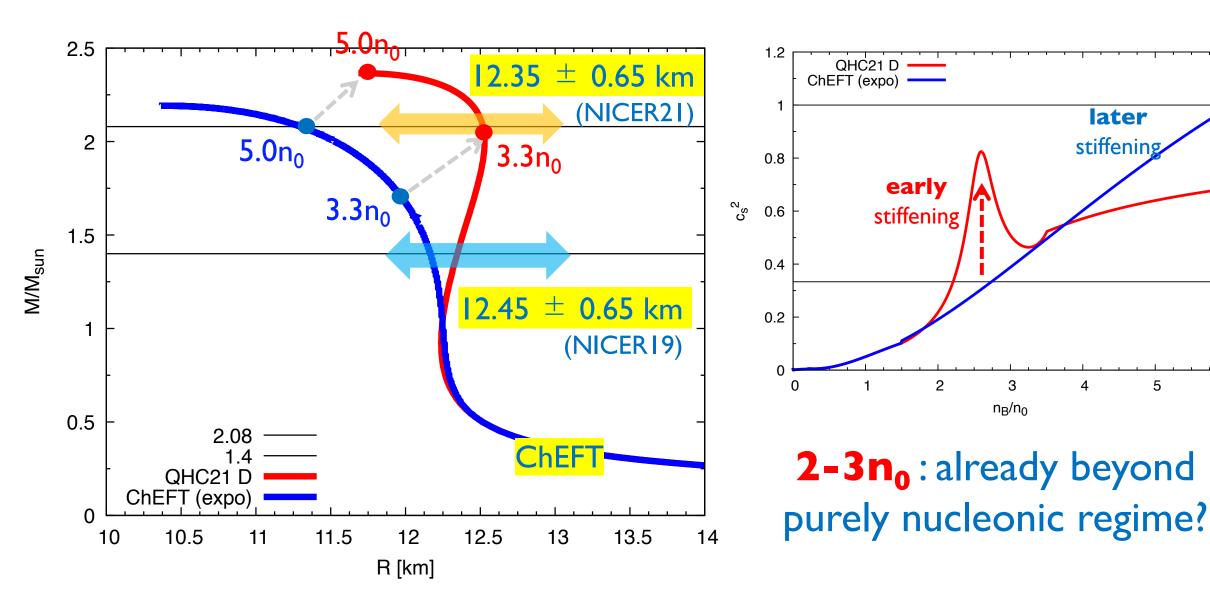
nuclear & quark physics constrain each other





baseline: quark-hadron continuity (QHC)

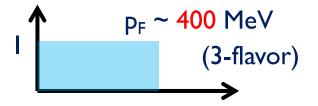
Early vs later stiffening



Claim

• naive estimate for quark matter formation density: $(R_B \sim 0.5-0.8 \text{ fm})$

$$n_B^{\text{overlap}} \sim I/(4\pi R_B^3/3) \sim 4-7n_0$$



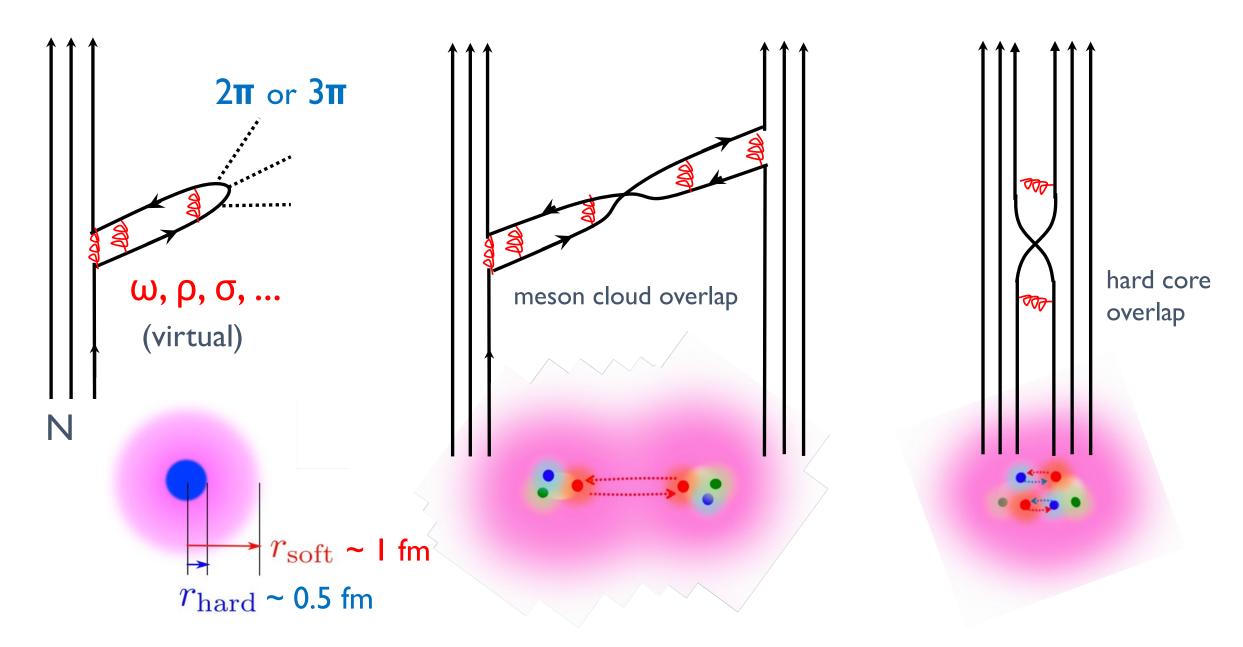
- we claim the existence of another scale, characterizing:
 - breakdown of many-body expansion
 - soft-deconfinement
 - quark saturation

$$n_B^{soft} \sim n_B^{q-sat} \sim 0.5 \times n_B^{overlap} \sim 2-3n_0$$

Contents

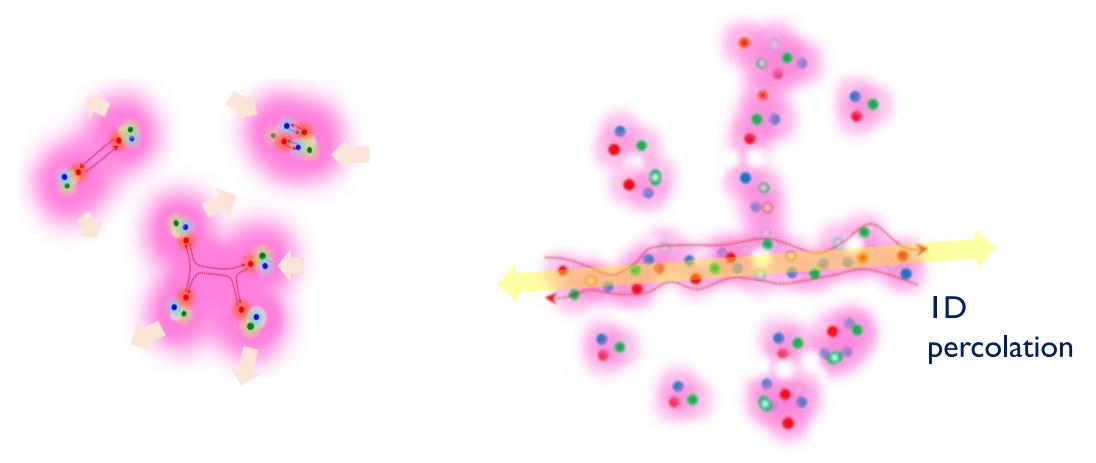
- I, Introduction
- 2, Soft-deconfinement
- 3, Quark saturation
- 4, Summary

"Soft" & "Hard" scales in a nucleon



Soft Deconfinement

relating "multi-quark exchanges" to "delocalization of quark w.f."



how can this transition be described?

Strategy (in dilute regime)

Separate fast quark dynamics from slow baryon dynamics

=> Born-Oppenheimer descriptions

I, The velocity:
$$k_B/E_B \sim I/N_C << k_q/E_q \sim I$$
 $(k_B \sim k_q \sim n_B^{I/3})$
 $n_B = n_q^R = n_q^G = n_q^B$

2, Find quark eigenstates for a given baryon configuration

3, Take the "time average" \rightarrow "ensemble average" of baryons

A model of quantum percolation

[Kirkpatrick-Eggarter '72,...]

tight-binding Hamiltonian

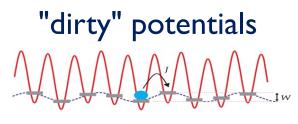
on-site energy hopping
$$H=\sum_n |n
angle arepsilon_n \langle n| + \sum_{n
eq m} |n
angle V_{nm} \langle m|$$

|n > : a quark state exists at a site n

$$V_{nm} = -V \ (V > 0)$$

nearest-neighbor hopping

- \cdot ϵ , V depends on a given baryon distribution
- $\cdot \varepsilon \rightarrow \infty$ when quarks are out of baryons
- quarks hop only within connected clusters (setup)
 - → geometrical (classic) percolation must occur first



• interference may kill amplitudes (Anderson localization)
connected path does not necessarily lead to delocalization

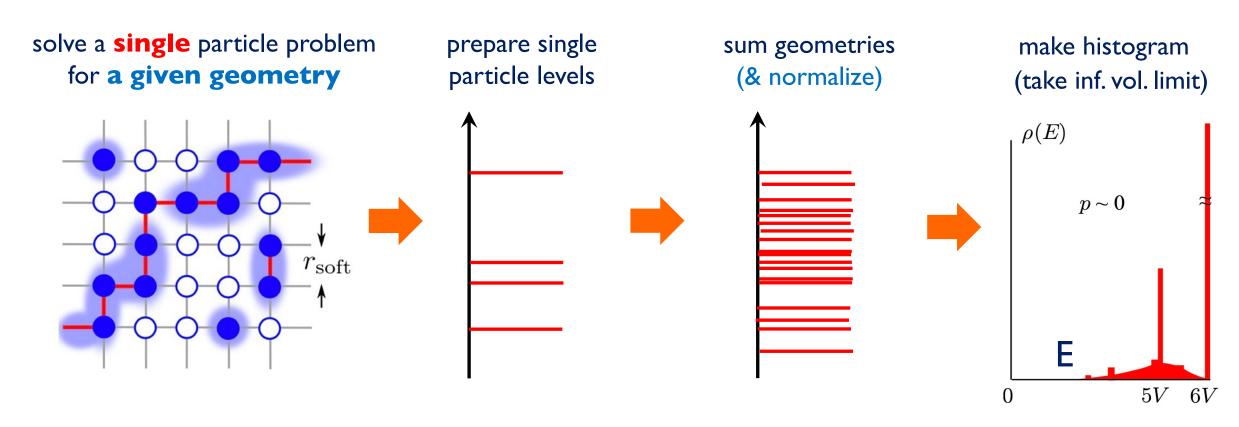
mode-by-mode percolation

(some modes delocalize earlier, the others later)

Delineating quark wavefunctions

procedures

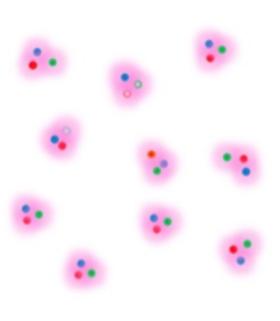
(e.g. 3D lattice model)

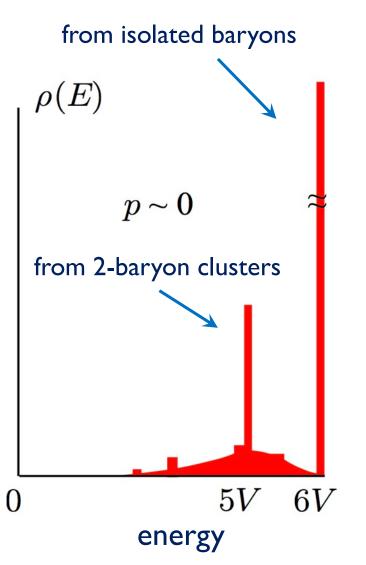


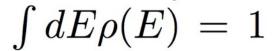
=> we diagnose the **quark contents** of given baryon configurations

quark Fermi sea & mode-by-mode percolation

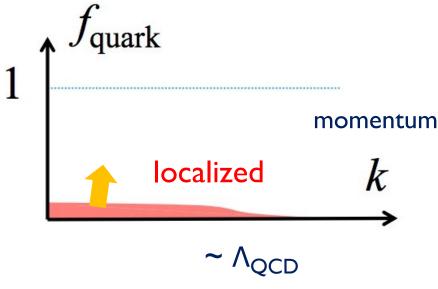
 \rightarrow energy ~ R_B^{-1}







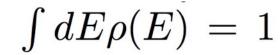
occupation probability

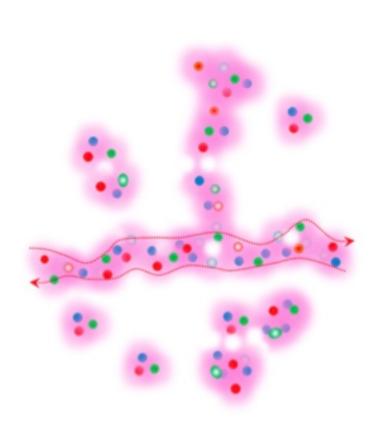


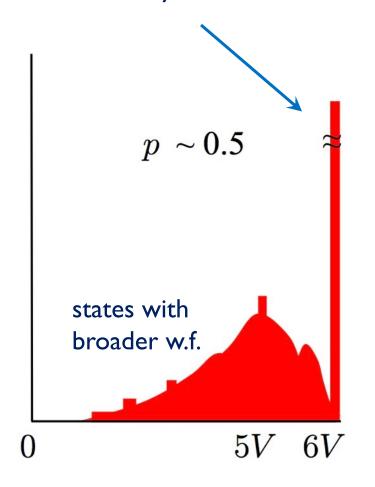
"nuclear"

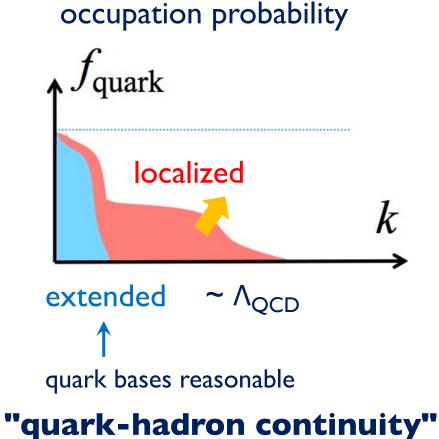
quark Fermi sea & mode-by-mode percolation

isolated baryons + sub-clusters



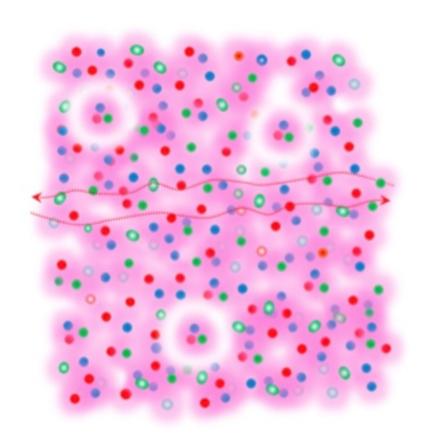


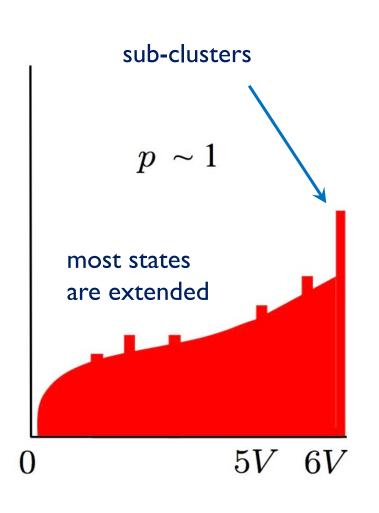


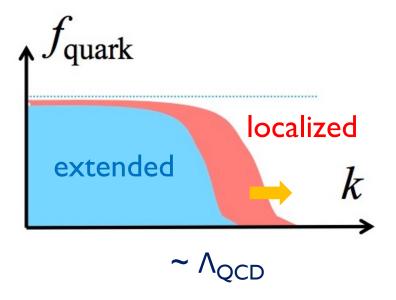


quark Fermi sea & mode-by-mode percolation

$$\int dE \rho(E) = 1$$



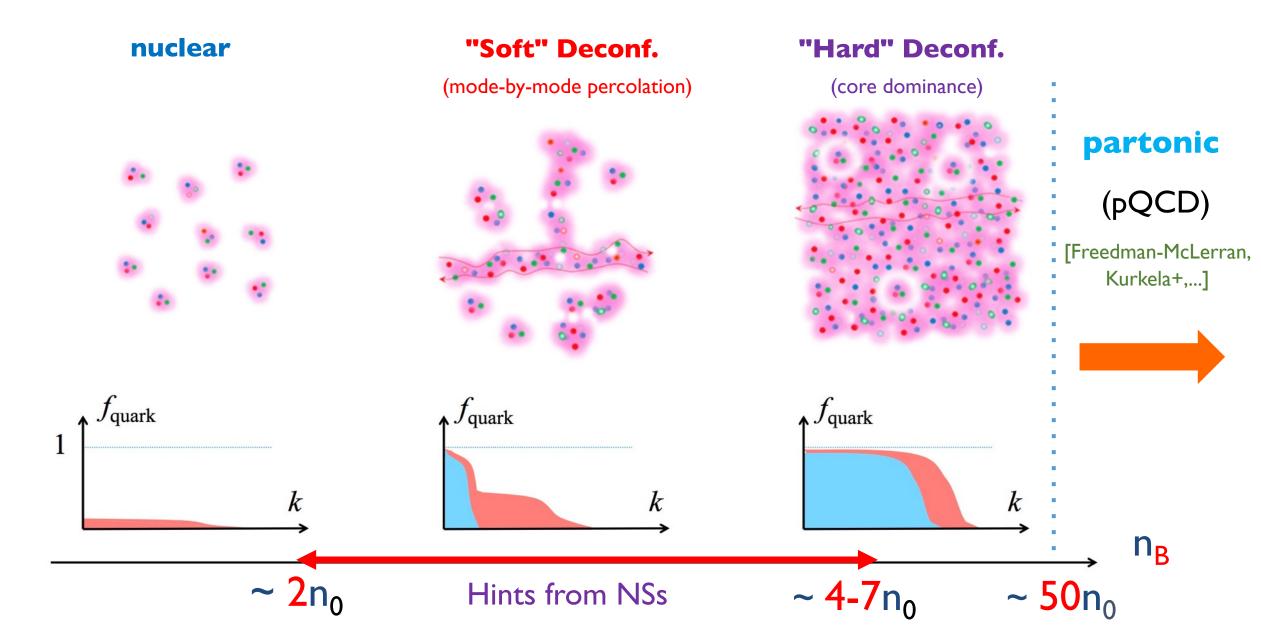




"quarkyonic"

[McLerran-Pisarski '06,...]

a cartoon



Contents

- I, Introduction
- 2, Soft-deconfinement
- 3, Quark saturation
- 4, Summary

Next step?

how can we go beyond the Born-Oppenheimer picture?

how can we explain the sound velocity peak?

how can we discuss many hadron (e.g. Δ , Σ , Λ , ...) species?

how can we implement the insights into practical models?

we propose a simple model of quark-hadron duality

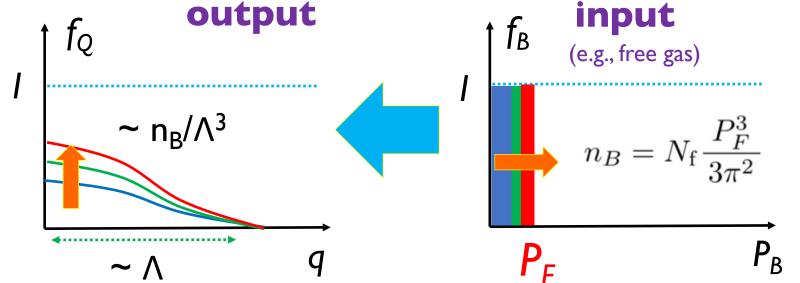
Sum rules for occupation probabilities cf) [TK '21, TK-Suenaga '21]

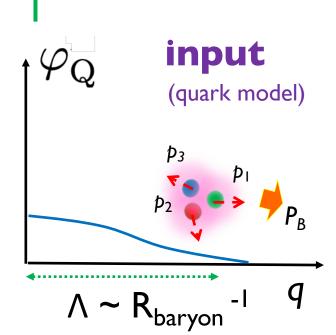
occupation probability of quark state with p

occupation **probability** of baryon state with P_B

quark mom. distribution in a baryon

$$f_{
m Q}({f q})=\int_{{m P}_B}f_{
m B}({m P}_B)arphi_{
m Q}^B({f q}-{m P}_B/N_{
m c})$$
 e.g.) in ideal baryonic matter output input $\varphi_{
m Q}$





An ideal model

[Fujimoto-TK-McLerran, PRL'23]

- 1) neglect interactions except confining forces

e.g.) 2-flavor hamiltonian:
$$arepsilon_{
m B}[f_{
m B}]=4\int_k E_{
m B}(k)f_{
m B}(k)$$

isosþin, sþin

- 2) quark distributions in a baryon remains the same (confinement persists)
- 3) use a special quark distribution \rightarrow models become analytically solvable

$$arphi_{
m 3d}(oldsymbol{q}) = rac{2\pi^2}{\Lambda^3} rac{e^{-q/\Lambda}}{q/\Lambda}$$

$$\hat{L} = -oldsymbol{
abla}^2 + rac{1}{\Lambda^2}$$

$$arphi_{3\mathrm{d}}(oldsymbol{q}) = rac{2\pi^2}{\Lambda^3} rac{e^{-q/\Lambda}}{q/\Lambda}$$
 $\hat{L} = -oldsymbol{
abla}^2 + rac{1}{\Lambda^2}$ $\hat{L}[arphi(oldsymbol{p} - oldsymbol{q})] = rac{(2\pi)^3}{\Lambda^2} \, \delta(oldsymbol{p} - oldsymbol{q})$

nontrivial output
$$f_{\mathrm{Q}}(\mathbf{q}) = \int_{\mathbf{P}_{B}} f_{\mathrm{B}}(\mathbf{P}_{B}) \varphi_{\mathrm{Q}}^{B}(\mathbf{q} - \mathbf{P}_{B}/N_{\mathrm{c}}) \qquad \qquad f_{\mathrm{B}}(N_{\mathrm{c}}\mathbf{q}) = \frac{\Lambda^{2}}{N_{\mathrm{c}}^{3}} \hat{L} \left[f_{\mathrm{Q}}(\mathbf{q}) \right]$$

$$f_{\mathrm{B}}(N_{\mathrm{c}}\boldsymbol{q}) = rac{\Lambda^2}{N_{\mathrm{c}}^3} \hat{L} \big[f_{\mathrm{Q}}(\boldsymbol{q}) \big]$$

natural at **high** density

natural at **low** density

useful for studies of the transient regime (d.o.f are not clear-cut)

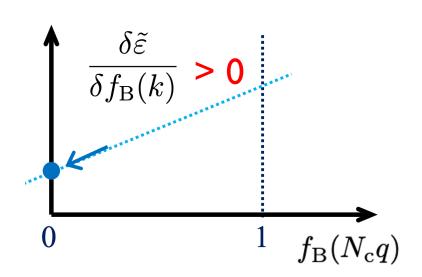
Variational problem with sum rule constraints

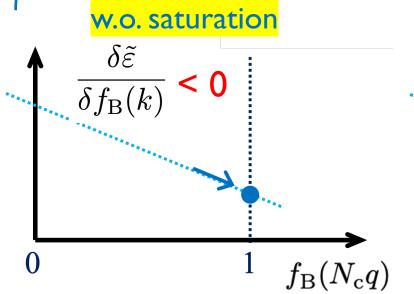
constraint to fix n_B $\tilde{\varepsilon} = \varepsilon_{\mathrm{B}}[f_{\mathrm{B}}] - \lambda_{\mathrm{B}}n_{\mathrm{B}}$

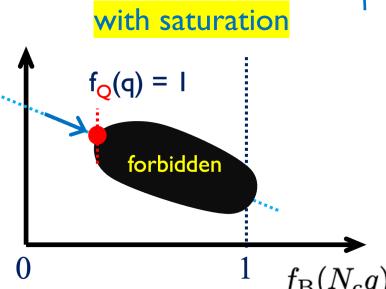
$$E_{
m B}(k) = \sqrt{M_{
m B}^2 + k^2} \qquad n_{
m B} = 4 \int_k f_{
m B}(k)$$

optimization:
$$\dfrac{\delta ilde{arepsilon}}{\delta f_{
m B}(k)} = E_{
m B}(k) - \lambda_{
m B}$$
 at a given k

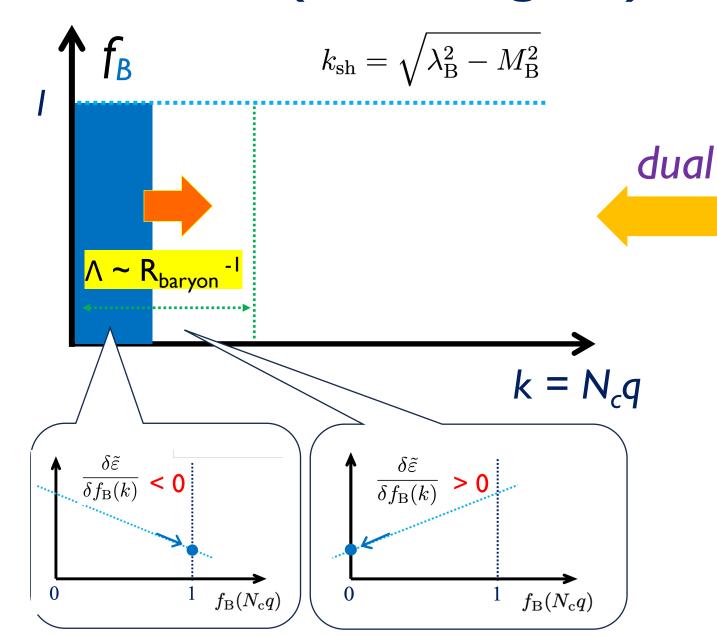
$$E_B(k) > \lambda_B$$

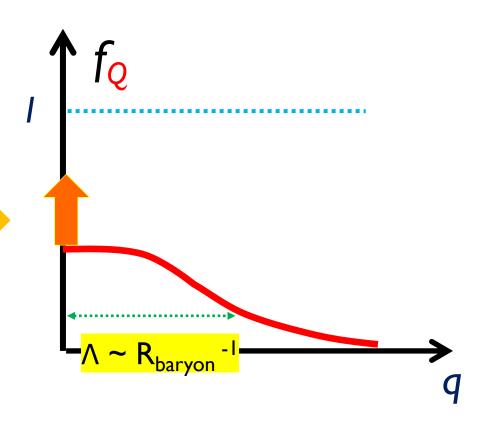




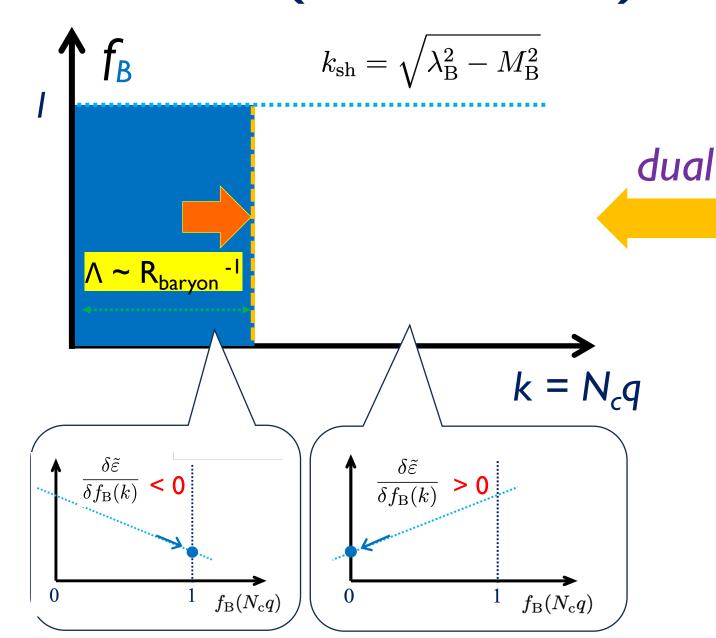


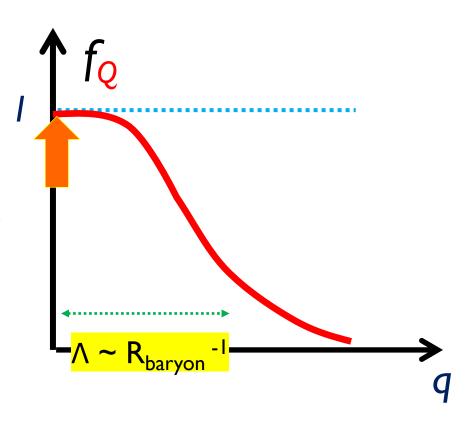
Solution (dilute regime)



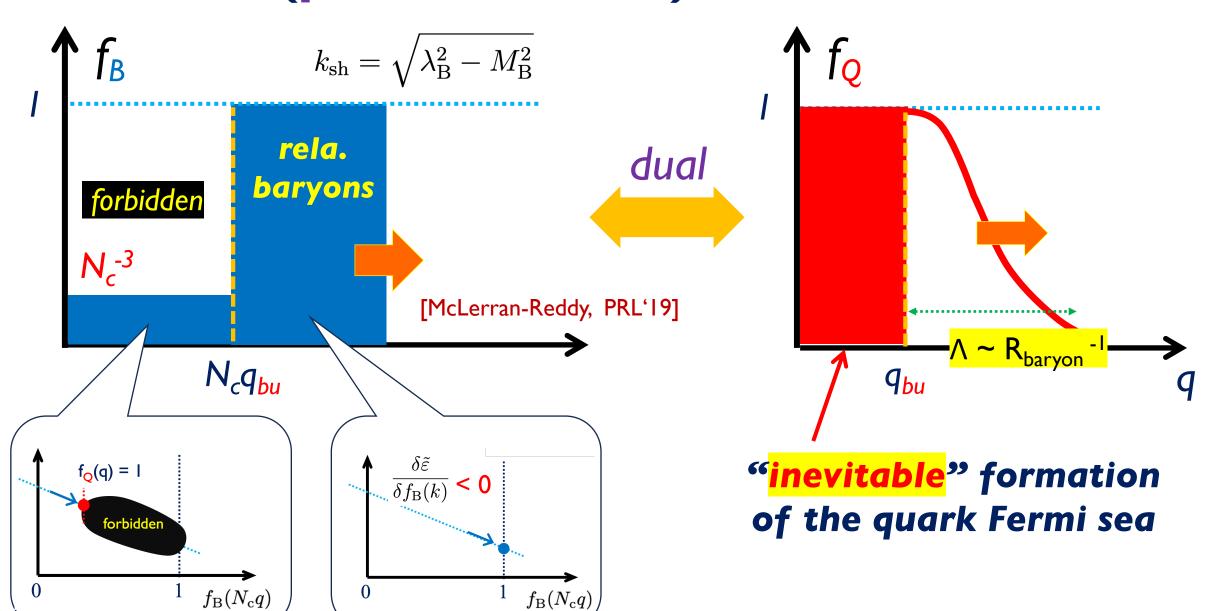


Solution (at saturation)



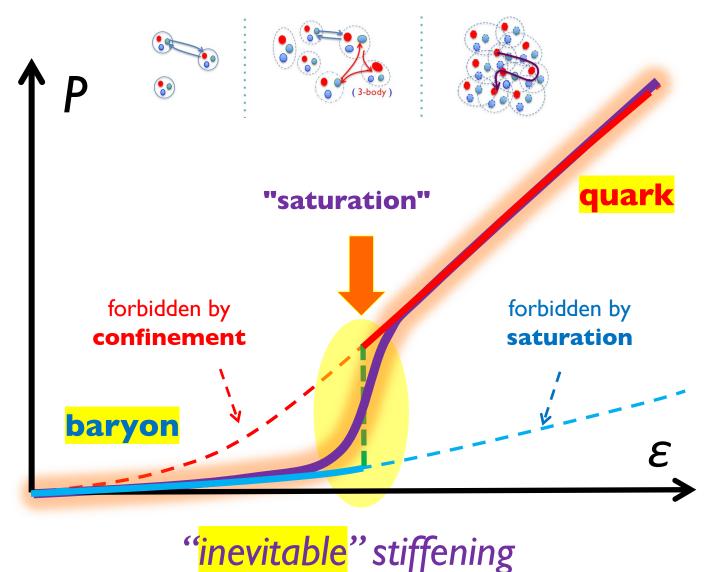


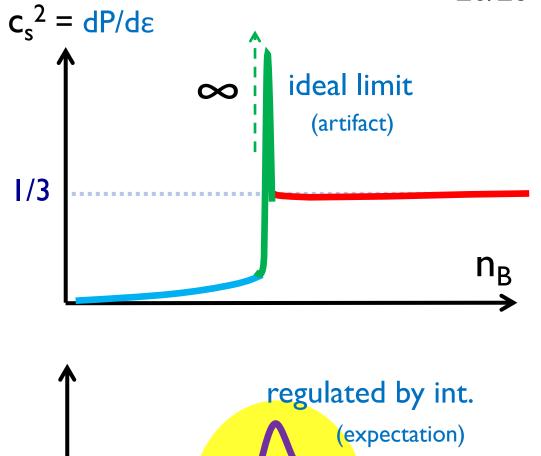
Solution (post saturation)



 n_B

Peak in sound velocity



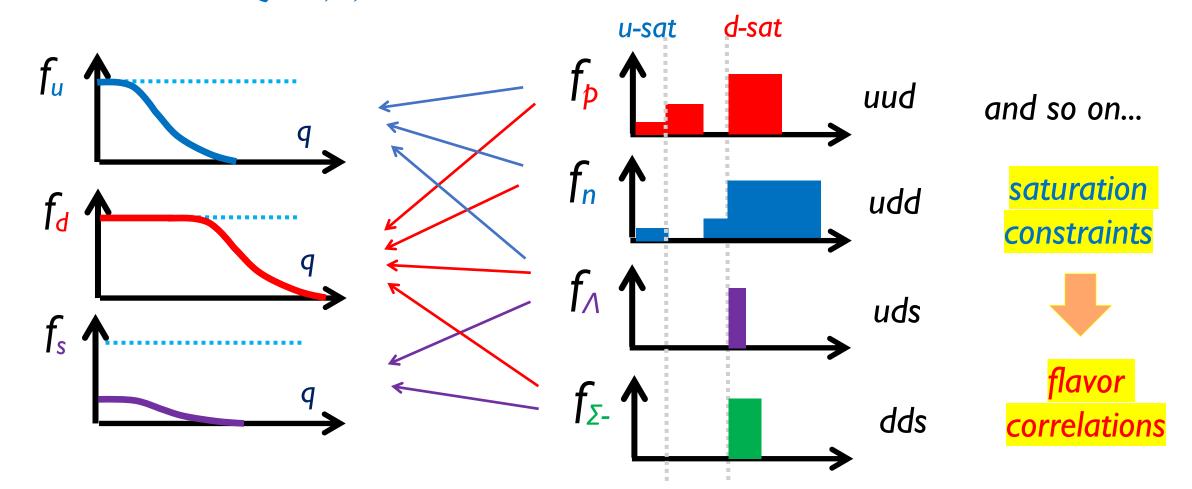


1/3

Multi-hadron extension

[Fujimoto-TK-McLerran, in prep.]

$$f_{\mathrm{Q}}(\boldsymbol{q}) = \sum_{B=p,n,\Sigma,\cdots} N_{\mathrm{Q}}^{\mathrm{B}} \int_{\boldsymbol{k}} f_{\mathrm{B}}(\boldsymbol{k}) \varphi \bigg(\boldsymbol{q} - \frac{\boldsymbol{k}}{N_{\mathrm{c}}} \bigg)$$



Summary

- Soft-to-stiff EOS
- quark-exchange and soft-deconfinement
- quark saturation effects, can be relevant at 2-3n₀ (!)
- not addressed (please ask in Q&A or personally):

```
relevant interactions at high density
```

hyperon puzzle

finite temperature effects

proof of concept: isospin QCD in lattice simulations

••••

Back Up

Quantum numbers?

quark quantum numbers; N_c , N_f , 2-spins (for a given spatial w.f.)

how many baryon species are needed to saturate quark states?

 \rightarrow need only **2N_f** = **6** species for N_f = 3

(full members of singlet, octet, decuplet are NOT necessary)

 $\Delta_{s_z=+3/2}^{++}$

convenient color-flavor-spin bases

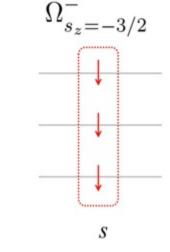
[neglect N-⊿ splitting etc. for simplicity]

$$\Delta_{s_z=\pm 3/2}^{++} = [u_R \uparrow u_G \uparrow u_B \uparrow], \quad [u_R \downarrow u_G \downarrow u_B \downarrow], \qquad R \qquad -$$

$$\Delta_{s_z=\pm 3/2}^{-} = [d_R \uparrow d_G \uparrow d_B \uparrow], \quad [d_R \downarrow d_G \downarrow d_B \downarrow], \qquad G \qquad -$$

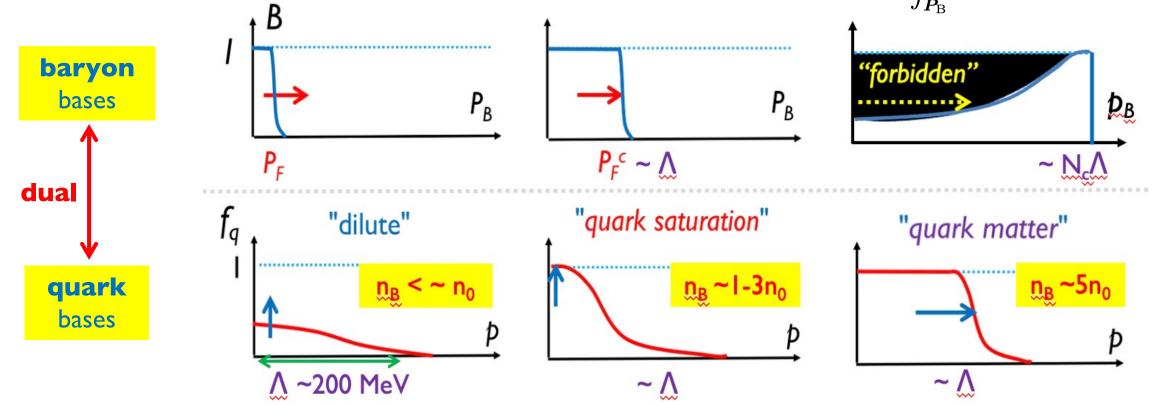
$$\Omega_{s_z=\pm 3/2}^{-} = [s_R \uparrow s_G \uparrow s_B \uparrow], \quad [s_R \downarrow s_G \downarrow s_B \downarrow], \qquad B \qquad -$$

$$u \qquad u \qquad u \qquad u \qquad u \qquad -$$



Evolution of occ. probabilities

$$f_{\mathrm{Q}}(\boldsymbol{q};n_{\mathrm{B}}) = \int_{\boldsymbol{P}_{\mathrm{B}}} f_{\mathrm{B}}(\boldsymbol{P}_{\mathrm{B}};n_{\mathrm{B}}) \varphi_{\mathrm{Q}}^{\mathrm{B}}(\boldsymbol{q};\boldsymbol{P}_{\mathrm{B}})$$



"quark saturation" constraint

 \rightarrow relativistic baryons at low density, $n_B \sim 1-3n_0$!

cf) McLerran-Reddy model (2019); microscopic description, TK (2021)

Early vs late stiffening

purely nucleonic descriptions typically lead to late stiffening

$$\varepsilon(n_B) = m_N n_B + a \frac{n_B^{5/3}}{m_N} + b n_B^{\alpha}$$

$$P = \frac{2}{3} a \frac{n_B^{5/3}}{m_N} + b (\alpha - 1) n_B^{\alpha}$$

$$P = n_B^2 \frac{\partial}{\partial n_B} \left(\frac{\varepsilon}{n_B}\right)$$
small (!)

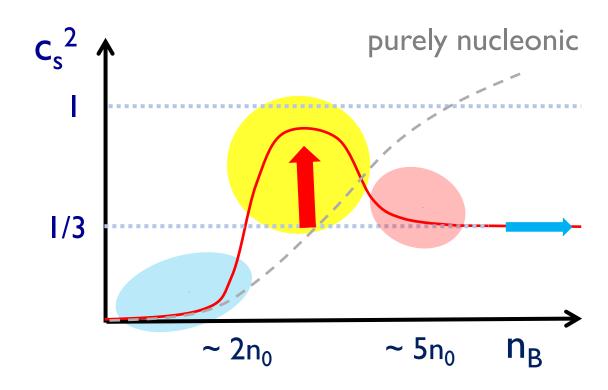
if interactions dominate (at large n_B):

$$P \sim (\alpha - 1)\varepsilon \rightarrow c_s^2 \sim (\alpha - 1)$$

2-body int.
$$\rightarrow \alpha = 2$$

3-body int.
$$\rightarrow \alpha = 3$$

but power terms grow rather slowly...

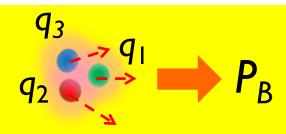


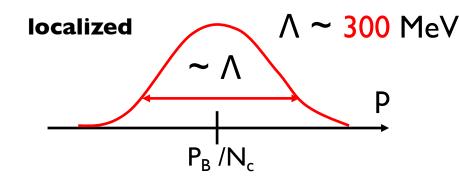
Quarks in a baryon

 N_c (=3): number of colors

probability density:

$$arphi(oldsymbol{q};oldsymbol{P}_{
m B})=\mathcal{N}{
m e}^{-rac{1}{\Lambda^2}\left(oldsymbol{q}-rac{oldsymbol{P}_{
m B}}{N_{
m c}}
ight)^2}$$





variance: $\left\langle \left(p - \frac{P_B}{N_c} \right)^2 \right\rangle \sim \Lambda^2$ energetic!

→ large "mechanical" pressure

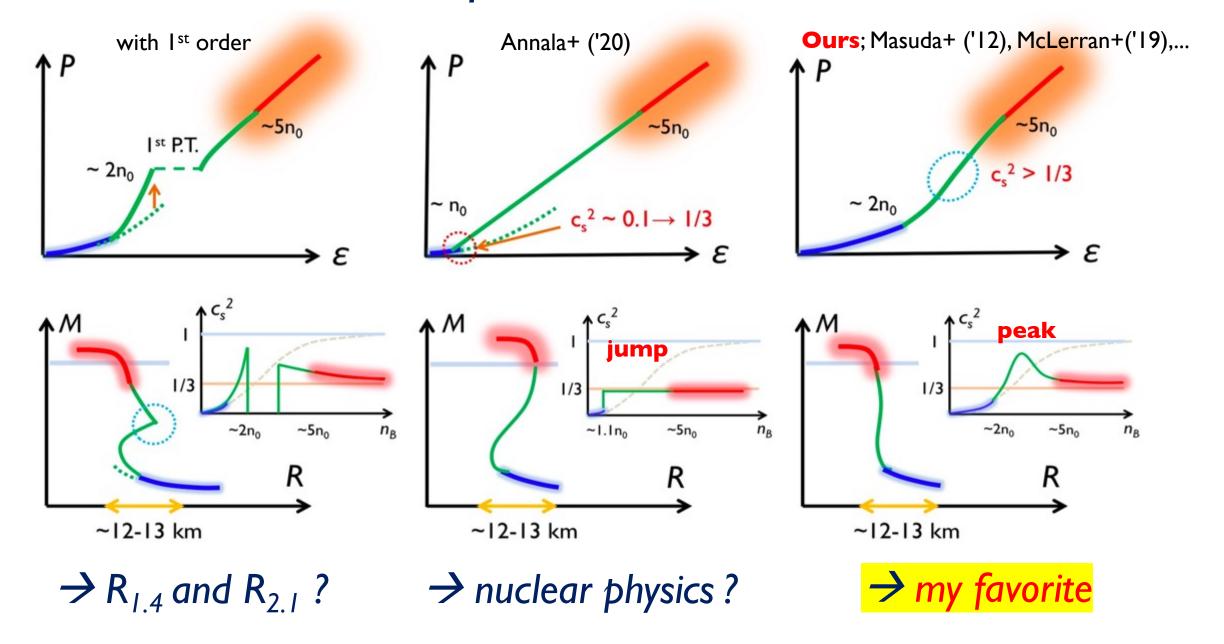
$$\langle E_q(\boldsymbol{p}) \rangle_{\boldsymbol{P}_B} = \mathcal{N} \int_{\boldsymbol{p}} E_q(\boldsymbol{p}) \mathrm{e}^{-\frac{1}{\Lambda^2} \left(\boldsymbol{p} - \frac{\boldsymbol{P}_B}{N_\mathrm{c}}\right)^2} \simeq \langle E_q(\boldsymbol{p}) \rangle_{\boldsymbol{P}_B = 0} + \frac{1}{6} \left\langle \frac{\partial^2 E_q}{\partial p_i \partial p_i} \right\rangle_{\boldsymbol{P}_B = 0} \left(\frac{\boldsymbol{P}_B}{N_\mathrm{c}}\right)^2 + \cdots$$

average energy (quark)

$$\sim N_c (M_q + E_{kin}) \gg \sim P_B^2 / (N_c E_q)$$

baryon mass baryon kin. energy

Three possible scenarios



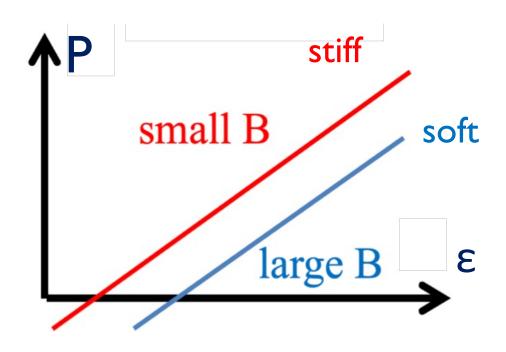
alternative baseline: quark EOS

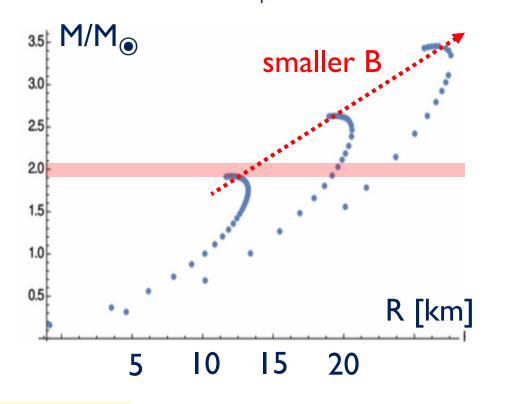
e.g.) free massless quarks

$$c_s^2 = 1/3$$

$$P = rac{arepsilon}{3} - B'$$

quark kin. E ~
$$N_c^2$$
 x nucl. kin. E ~ $N_c \times p_F^2/M_a$ ~ $P_F^2/N_c M_a$



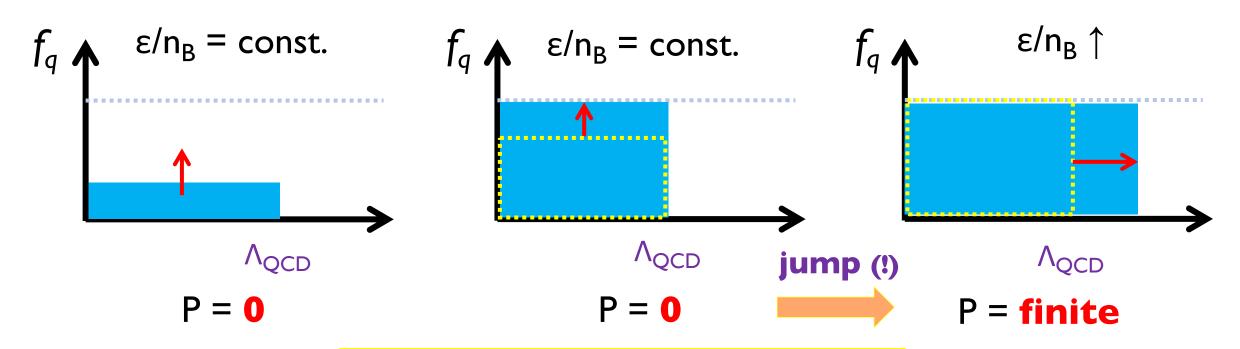


relativistic pressure -> stiff EOS

can be a good starting point!?

Jump in pressure : schematic picture

$$\mathcal{P}=n_B^2\,rac{\partial}{\partial n_B}igg(rac{arepsilon}{n_B}igg)$$
 energy per particle



 f_q continuous $\rightarrow \epsilon$, n_B are continuous

Quarks do contribute to ε even before saturation; but to P only after the saturation!!

Stiff quark matter

The appearance of c_s^2 peak is characteristic in the QHC scenarios, but is not sufficient condition for $\sim 2.1-2.3 M_{\odot}$ NS.

Just after the crossover, quarks are not fully relativistic.

Can the chiral restoration makes quarks massless and stiffens EOS?

Unlikely: it adds "the bag constant" to the energy density! (look at Dirac sea!)

 $\rightarrow \varepsilon$ increases & P decreases: **significant** softening!

Now, we consider interactions on top of IdylliQ models.

Underlying picture (guess)

[∗] Gluons remain non-perturbative at 5-10n₀

(see, e.g., lattice results for 2-color & isospin QCD)

Chiral restoration occurs mildly

implicitly included in IdylliQ type models

Continuity:

interactions in quark matter should have natural counterpart in hadron physics

Short range correlations in a baryon:

my favorite: color-electric & magnetic interactions

Simple parametric analyses

[TK-Powell-Song-Baym, '14]

ideal

rela. kin. energy interactions

$$\varepsilon(n) = an^{4/3} + \underline{bn^{\alpha}}$$

(n: quark density)

$$\varepsilon(n) = an^{4/3} + \underline{b}n^{\underline{\alpha}} \qquad \qquad P = \frac{\varepsilon}{3} + \underline{b}\left(\underline{\alpha} - \frac{4}{3}\right)n^{\alpha}$$

For stiff EOS:

(for large P)

for $\alpha > 4/3$:

b > 0

(e.g. bulk repulsion, $\sim + n_B^2/\Lambda^2$)

for $\alpha < 4/3$:

b < 0

(e.g. surface pairings, $\sim -1/2 n_B^{2/3}$)

interactions

quark Fermi sea (ideal combo)

repulsion

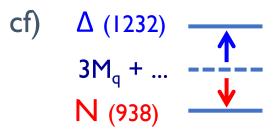
Stiff EOS from attractive forces

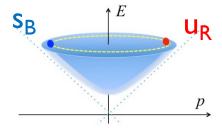
Color-magnetic interaction play many roles

become important in relativistic regime & high density

2) Pairing: strongly channel dependent

hadron mass ordering: N-Δ, etc. [DeRujula+ (1975), Isgur-Karl (1978), ...] color-super-conductivity [Alford, Wilczek, Rajagopal, Schafer,... 1998-]





3) Baryon-Baryon int.: short-range correlation

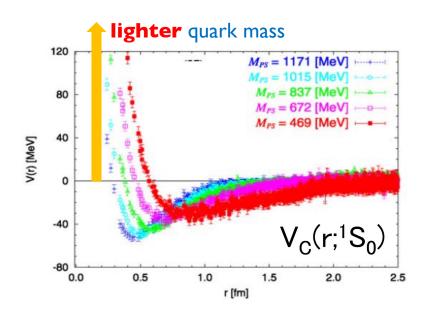
(Pauli + color-mag.)

[Oka-Yazaki (1980),...]

channel dep. → non-universal hard core (some are attractive!)

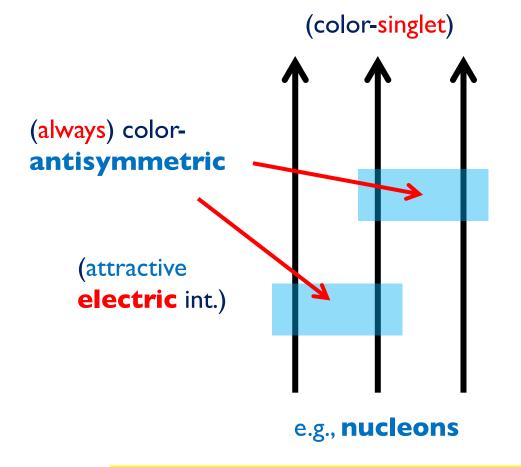
mass dep. \rightarrow stronger hard core in relativistic quarks

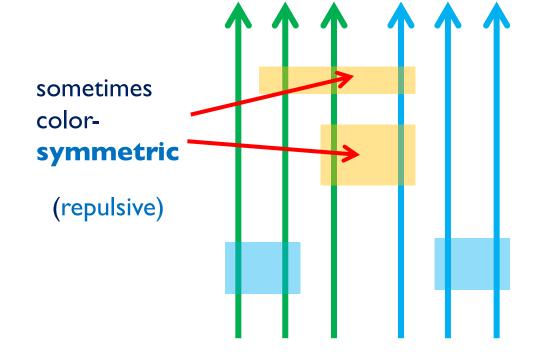
→ consistent with the lattice QCD [HAL-collaboration]



a baryon in dilute regime

in dense regime





 $M_N \sim 3M_{q.} + kin. + color-EM$ $\sim 940 MeV \sim 1100 MeV \sim -150-200 MeV$

more chances to feel repulsion

EoS with interactions

cf) [TK '21, TK-Suenaga '21]

Important relations

sum rule

single baryon contain single R- or G- or B- quark

$$n_q^{R,G,B} = \int_{\mathbf{p}} f_q(p) = \int_{\mathbf{p}} \left(\int_{\mathbf{P_B}} \mathcal{B}(P_B) \underline{Q_{\mathrm{in}}(\mathbf{p}; \mathbf{P_B})} \right) = \int_{\mathbf{P_B}} \mathcal{B}(P_B) = n_B$$

energy density

$$E_B(P_B) \equiv N_{\rm c} \int_{\mathbf{p}} E_q(\mathbf{p}) Q_{\rm in}(\mathbf{p}; \mathbf{P_B})$$

$$\varepsilon = \int_{\mathbf{P_B}} \underline{E_B(P_B)} \mathcal{B}(P_B) = N_{c} \int_{\mathbf{P_B}} \left(\int_{\mathbf{p}} E_q(\mathbf{p}) \underline{Q_{\text{in}}(\mathbf{p}; \mathbf{P_B})} \right) \mathcal{B}(P_B) = N_{c} \int_{\mathbf{p}} E_q(\mathbf{p}) \underline{f_q(p)}$$

Dual expression: one can freely switch descriptions

No double counting

Finite-T model

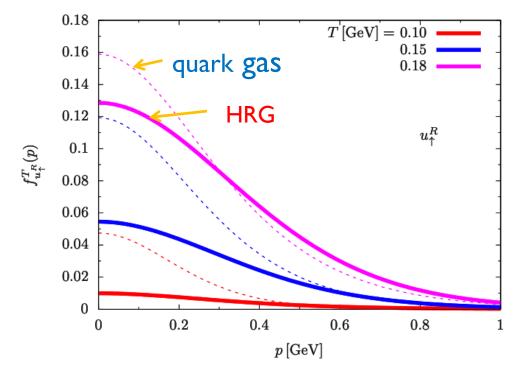
Hadron Resonance Gas model for quark distribution

see [TK-Suenaga, '22]

$$f_{\mathbf{q}}^T(oldsymbol{p}) = \sum_h \int_{oldsymbol{P}_h} n_h^T(oldsymbol{P}_h) Q_{\mathrm{in}}^{h\mathbf{q}}(oldsymbol{p};oldsymbol{P}_h) \ n_h^T(oldsymbol{P}_h) \ = \ egin{bmatrix} \mathrm{e}^{E_h(oldsymbol{P}_h)/T} & -1 \end{bmatrix}^{-1}$$

• calculate quark w.f. for mesons up to L = 3, $n_r = 4$; $E < \sim 2.5$ GeV

	$n_r^{2S+1}L_J$	$M_{ m exp}$	$M_{ m cal}$	$ar{m{P}}^2$	$\sqrt{\langle m{r}^2 angle}$	f_S	$lpha_s$
π	1^1S_0	0.14	0.16	0.47	0.50	0.70	0.80
	2^1S_0	1.30	1.28	0.43	0.98		
	3^1S_0	1.81	1.82	0.55	1.38		
	4^1S_0	2.07**	2.22	0.67	1.66		
ρ	1^3S_1	0.78	0.76	0.21	0.66	0.74	0.80
	2^3S_1	1.47	1.44	0.35	1.17		
	3^3S_1	1.91*	1.87	0.48	1.55		
	4^1S_1	2.27**	2.22	0.61	1.83		
K	1^1S_0	0.49	0.49	0.42	0.49	0.72	0.77
	2^1S_0	1.46*	1.46	0.45	0.98		
K^*	1^3S_1	0.89	0.91	0.24	0.63	0.75	0.77
	2^3S_1	1.41	1.54	0.39	1.10		



quark gas ~ HRG

at ~ 0.15-0.18 GeV