

Results from pion beam experiments with HADES

Béatrice Ramstein, IJCLab, Orsay, France

EMMI Workshop

Probing dense baryonic matter with hadrons II: FAIR Phase-0 GSI, February 19-21, 2024

Outline

Ahmed Foda's talk

Motivations:

- hadronic physics studies (π^- + p)
- Cold matter studies (π^- + A)
- \rightarrow Validation of hadronic models

HADES data vs transport models :

Examples from Heavy-ion and proton induced reactions (focus on hadron production)

Results of HADES pion beam experiment

- π^- + C 0.69 GeV/c
- π⁻ + W/C 1.7 GeV/c

Conclusion-outlook

HADES: exploring dense QCD matter

Objectives

Equation-of-State:

First order transition ? Search for a critical point

Chiral symmetry restoration

Microscopic structure of baryon dominated matter

Role of baryonic resonances, hyperons

Complementary to SPS,RHIC,...

A+A: 1-3A GeV √s=2-2.4 GeV

T. Galatyuk, NPA-D-18-00411 (2018) QM18

Observables:

- ✓ Correlations and fluctuations (Romain Holzmann's talk)
- ✓ Collective effects

(Behruz Kardan's talk)

- ✓ Strangeness
- Dileptons
- ✓ Hadron yields

Pion dynamics for heavy ion collisions at a few AGeV

Pion production dominates the inelastic NN cross section

- \rightarrow Pion-nucleus dynamics crucial to describe the evolution of HI collisions
 - \rightarrow thermalization processes of nuclear medium
 - \rightarrow particle yields
- ↓S_{NN} < 2.6 GeV (A+A SIS18@GSI) most pions in the Δ(1232) region
 well studied experimentally → Δ-hole model
 ↓S_{NN} > 2.6 GeV basically not investigated
 Future experiments: p+A (SIS18@GSI & SIS100@FAIR) or A+A (SIS100)

```
Higher lying resonances contribute.
```


Data base for pion-nucleus reactions

Missing measurements for p_{π} > 500 MeV to validate hadronic/cascade models

- for hadronic matter studies at $Vs_{NN} > 2.6 \text{ GeV}$
- for detector studies (e.g. e/π discrimination in calorimeters)
- for neutrino physics (v flux and v detection)

ν/π -nucleus interactions

ν cross sections

Long Based Line (LBL) v oscillation expts:

v/ \dot{v} yields measured as a function of energy in Near and Far detectors Detector material: T2K/HK : H₂O and CH ; DUNE: Ar

a large fraction (~50%) of the uncertainties on v oscillation parameters is due to hadronic models (INCL++, GIBUU,...needed to reconstruct v energy) !

Evolution of LBL experiments :

 \rightarrow detect as many reaction

products as possible

 $(p, \pi, n, ...)$

Quasi-elastic

CC RES

Resonance excitation

well constrained large uncertainties

Hadronic channels in pion beam (HADES) data can help !

- different primary interaction w.r.t. neutrino-nucleus interaction, but similar energy dissipation processes (elastic/inelastic reactions, baryon resonance propagation, pion regeneration)
- can validate models in well constrained conditions (known energy transfer)

HADES data vs transport models (I)

HADES data vs transport models (II)

p+Nb @ 3.5 A GeV

HADES Phys. Rev. C 108, 064902

Deviations of hadron yields w.r.t GIBUU by up to a factor 2

20/02/2024 EMMI workshop B. Ramstein

Interest of π induced reactions for hadronic matter studies

1. π^- + A: direct test of pion dynamics in nucleus

different mechanisms: elastic/inelastic channels, pion absorption

3. Medium effects : « recoilless » production of particles,

 \rightarrow higher sensitivity to medium effects than p+A collisions

Interest of π induced reactions for baryon structure studies

See Foda 's talk

Production of baryon resonance with given mass in s-channel $M_{R} = \sqrt{S_{\pi n}}$

- Very precise data base for γ induced reactions (polarization)
- π +N data are very scarce and date back to the 80's in many channels (few differential cross sections,...)
- Baryon structure knowledge relies on Partial Wave Analysis or coupled channel analysis which need both types of information !

hadronic matter studies !

	All	πN	γN	$N\eta$	ΛK	ΣK	$\Delta \pi$	$N\sigma$
$N(1440)^{\frac{1}{2}}$	****	****	****	(*)			***	***
$N(1710)^{\frac{1}{2}}$	***	***	***	***	***	$\star\star$	*(*)	
$N(1880)\frac{1}{2}^+$	**	*	*		**	\star		
$N(1535)\frac{1}{2}$	****	****	****	****			*	
$N(1650)\frac{1}{2}$	****	****	***	***	***	**	**(*)	
$N(1895)\frac{1}{2}$	**	*	**	**	**	*		
$N(1720)\frac{3}{9}^+$	****	****	****	****	**	**	***	
$N(1900)\frac{3}{2}^+$	***	**	***	**	* * *	**	**	
$N(1520)\frac{3}{2}$	****	****	****	***			****	
$N(1700)\frac{3}{2}$	***	**	**	*	*(*)	*	***	
$N(1875)\frac{3}{2}$	***	*	***		***	**		***
$N(2150)\frac{3}{2}$	**	**	**		**		**	
$N(1680)\frac{5}{2}^+$	****	****	****				**(*)	**
$N(1860)\frac{5}{7}^+$	*	*	*					
$N(2000)\frac{5}{2}^+$	***	*(*)	**	**	**	*		
$N(1675)\frac{5}{2}$	****	****	***(*)	*	8		***(*)	*
$N(2060)\frac{5}{2}$	***	**	***	*		**		
$N(1990)\frac{7}{2}^{+}$	**	*(*)	**					
$N(2190)\frac{7}{2}$	****	****	***		**			
$N(2220)\frac{9}{7}$ +	****	****						
$N(2250)\frac{9}{9}$	****	****						
$\Delta(1910)^{+}_{5}$	****	****	**			**	**	
$\Delta(1620)^{\frac{1}{n}}$	****	****	***				****	
$\Delta(1900)\frac{1}{2}^{-}$	**	**	**			**	**	
$\Delta(1232)\frac{3}{2}^+$	****	****	****					
$\Delta(1600)^{\frac{3}{2}+}$	***	***	***				***	
$\Delta(1920)\frac{3}{2}^+$	***	***	**			***	**	
$\Delta(1700)\frac{3}{5}$	***	***	***				**	
$\Delta(1940)\frac{3}{2}^{-}$	*	*	**				* fro	m $\Delta \eta$
$\Delta(1905)\frac{5}{2}^+$	****	****	****			***	**(**)	
$\Delta(1950)\frac{7}{2}^+$	****	****	***			***	***	

(Eur. Phys. J. A 48, 15 (2012)

This knowledge is also needed for

HADES pion beam line at GSI

HADES pion beam experiments

- * Data on carbon mainly used for subtraction of π^-+C interactions in CH₂ target to access the π^-+p reaction
- Large statistics for hadronic channels (π⁺, π⁻, p, d, t) on C target can be exploited ! Fatima Hojeij's PhD, Paris-Saclay, Nov. 2023

Spectra obtained for different exit channels compared to predictions of SMASH, GIBUU, RQMD.RMF and INCL++ (full GEANT simulations)

Main reaction channels in $\pi^-+{}^{12}C$ at 0.69 GeV/c

• π^-+N initial collision:

Quasi-elastic and charge exchange:

- $\pi^- + p \rightarrow \pi^- + p$ 17.8 mb quasi-elastic scattering
- $\pi^- + n \rightarrow \pi^- + n$ 12 mb quasi-elastic scattering
- $\pi^- + p \rightarrow \pi^0 + n$ 10 mb charge exchange

Inelastic (pion production)

- $\pi^- + p \rightarrow n + \pi^- + \pi^+$ 5.9 mb
- $\pi^- + p \rightarrow p + \pi^- + \pi^0$ 3.77 mb
- $\pi^- + p \rightarrow n + \pi^o + \pi^o$ 2.2 mb
- π^- + n \rightarrow p + π^- + π^- 2.1 mb
- $\pi^- + n \rightarrow n + \pi^- + \pi^0$ 0.39 mb
- Multi step (rescattering)

$\pi N \rightarrow \pi N$, $\pi N \rightarrow \pi \pi N$, $NN \rightarrow NN$

 $\pi N \rightarrow \pi N$ followed by $NN \rightarrow NN\pi$ kinematically suppressed : Two-pion production occurs mainly in the same step, via $\pi N \rightarrow \pi\pi N$.

Modifications of kinematics expected for $\pi^{\text{-}}\text{+}\text{C}$:

- Potential
- Fermi motion

Main contribution from s-channel N* excitations, N* $\rightarrow \pi \Delta$, σN , ρN

Collision number not so large. Try to identify specific reaction chains ?

First look at $p\pi^-$ events : quasi-elastic/inelastic

(p,π^{-}) quasi-elastic (QE) channel

 $\pi^{-}+^{12}C$ at 0.69 GeV/c

Broadening of angular distribution w.r.t. π^- + p too large, except in INCL++ Effect of nucleon momentum distribution, pion rescattering,...

Residual ¹¹B is not much excited INCL++ has too large excitation energies by ~ 20 MeV (too large nucleon potential ?)

15

Short Range correlations in carbon nucleus

- Excess yield at large p_{miss} (>500 MeV/c) consistent with Short Range Correlations implemented in INCL++ (parametrization based on existing data)
- ✓ Further SRC Search for pp SRC pairs in $pp\pi^-$ events: not conclusive, kinematics can not disentangle SRC and sequential emission
- ✓ Dedicated experiment foreseen with HADES : p+Ag 4.5 GeV (pp and pn SRC pairs will be investigated

J. Ritman's talk

$\pi^-\!\!+^{12}C \longrightarrow p\!+\!\pi^-\!\!+\!\pi^-\!\!+\!X$

 $\pi^{-}+^{12}$ C at 0.69 GeV/c

a) Single step production:

 π^- + n $\rightarrow \pi^-$ + π^- + **p**, (σ =2.1 mb) recoiling ¹¹C Minimum missing mass

 $\pi^- + p \rightarrow \pi^- + \pi^0 + p$ (3.3 mb); $\pi^0 + n \rightarrow \pi^- + p$ $\pi^- + n \rightarrow \pi^- + \pi^0 + n$ (0.4 mb); $\pi^0 + n \rightarrow \pi^- + p$ Larger missing mass, lower inv. Mass

 $\pi^{-} + p \rightarrow \pi^{-} + p$ (17.8 mb); $\pi^{-} + n \rightarrow p + \pi^{-} + \pi^{-}$

b) Two step production:

- Disentangle single and multi step processes
- In overall too strong proportion of single step processes in models w.r.t. data

$\pi^-\!\!+^{12}C \longrightarrow p\!+\!p\!+\!\pi^-\!\!+\!X$

 $\pi^{-}+^{12}$ C at 0.69 GeV/c

Allows to distinguish sequences of inelastic from elastic processes.

Cross section summary table

π^{-} +12C at 0.69 GeV/c

Integrated cross sections in HADES acceptance

π [−] + ¹² C → reaction 2-3 charged particles channels	σ ^{acc} [mb]	σ ^{acc} SMASH [mb]	σ ^{acc} rQMD [mb]	σ ^{acc} GIBUU [mb]	σ ^{acc} [mb]
$p\pi^-$ quasi- elastic	3.05749	12.6985	6.96586	3.44757	2.61393
$p\pi^-$ inelastic	3.35684	4.83481	7.45256	1.76097	2.15597
π ⁻ π ⁻	0.229554	0.187058	0.438986	0.0529949	0.324116
$\pi^-\pi^+$	1.06115	2.17662	2.39893	0.459961	1.46397
$\pi^+\pi^+$	0.00207372	0.00755551	0.00636384	0.000245144	0.00305625
$p\pi^+$	0.320214	0.774002	1.12059	0.140976	0.300638
pp	1.8327	3.30951	6.35023	1.19376	1.06719
p π ⁻ π ⁺	0.0463039	0.134989	0.202082	0.021943	0.0525704
p π ⁻ π ⁻	0.0646787	0.0596407	0.16292	0.0228274	0.0536891
p p π ⁻	0.337741	0.617297	1.07159	0.192891	0.153924
ррр	0.047972	0.082285	0.300865	0.039017	0.0238212

Preliminary conclusion:

• rQMD.RMF and SMASH strongly overestimate particle yields

INCL and GIBUU give the best overall description

Inclusive hadronic channels in π^-+C at 0.69 GeV/c

HADES pion beam experiments

$\pi^{-}+^{12}C/W$ at 1.7 GeV/c

July 2014 :

3 10^5 K⁺ and 6.5 10^3 K⁻ in π^- + W 2.5 10^5 K⁺ and 1 10^4 K⁻ in π^- + C hadronic ϕ , Λ , K⁰_S, K[±], π^\pm , p channels p =1.7 GeV/c \sqrt{s} =2 GeV/c²

Strangeness production

π^- +¹²C/W at 1.7 GeV/c

UrQMD:Kittiratpattana et al., 2305.09208 [nucl-th]

Important data base for interpretation of strangeness channels in heavy-ion reactions (KN potential,..)

Kaon and ϕ absorption

 π^{-} +¹²C/W at 1.7 GeV/c

HADES Phys.Rev.Lett. 123 (2019) 2, 022002

•Strong coupling between K⁻ and φ •Evidence for substantial K⁻ and φ absorption

Improvements since 2014 experiment

detectors:

RICH x3 efficiency for e+e- pair reconstruction + optimized conversion rejection (reduction of CB)

ECAL : possibility to detect neutral mesons

pion beam:
Better extraction → Higher primary beam intensity (x2)
was confirmed November-December 2023

HADES+ GSI pion beam : unique set-up in world Needs to be further exploited !!

HADES pion beam experiments: future plans

GPAC 2022: π^{-} + CH₂ and C p_{π} =1.1 GeV/c 5 energy points in the region \sqrt{s} = 1.76 GeV (One extended measurement for e⁺e⁻ channels) 95 A⁻ shifts could now be scheduled (2025 ?)

✓ π + p : hadronic couplings (PWA) + time-like electromagnetic structure of baryons (Foda's talk)

Expected statistics for $\pi^- + p$ (one energy point = 1.2 shift)

$\pi^+\pi^-n$	$\pi^0\pi^-p$	$\pi^0\pi^0$ n	$K^0\Lambda$	$\Sigma^0 K^0$	$\Sigma^+ K^-$	ηn	ωn
$4.1 \ 10^6$	$1.7 10^6$	$5.8 \ 10^4$	$2.3 \ 10^4$	$9.8 \ 10^3$	$8.7 \ 10^4$	$1.4 10^4$	$5.8 \ 10^4$

✓ π^- + C : cold matter studies.

- Channels : π , K, η , ρ , ω , Λ , subthreshold ϕ .
- Multi-differential cross-sections + correlations in various exit channels
- Validation of hadronic models at higher energies
- Data base for general purpose (neutrino physics ,...)

Further cold matter studies

After 2025 π^- + Ag p_{π} =1.1 GeV/c

Full GEANT simulations with realistic stat. fluctuations (Ag : 43 shifts)

In-medium p meson broadening

Pion induced reactions

- \rightarrow small momentum of reaction products
- (detection by HADES down to 200 MeV/c)
- \rightarrow higher sensitivity to medium effects than p+A

Cold matter studies:

- Dilepton channels : π -+Ag :
- $\rightarrow \rho$: test predictions of ρ meson broadening use updated baryon-meson couplings from π +p
- $ightarrow \omega$: quantify absorption
- Hadronic channels (including strangeness) copiously produced:

Medium effects on meson production, potentials,...

Conclusion

- The 2014 experiment has demonstrated the high potential of pion induced reactions for cold matter studies studied with HADES at GSI
 - ✓ p=0.69 GeV/c N(1520) region: pion dynamics
 - ✓ p=1.7 GeV/c strangeness channels
 - \rightarrow New data base available for model validation
 - \rightarrow Interest for hadronic matter and neutrino oscillation studies
- Will be further extended
 - ✓ next experiment π^- +p /¹²C p=1.1 GeV/c
 - ✓ to be complemented in near future by π^- +Ag

Longer term program ? Systematic studies of π^-+A in complement to π^-+p hadronic couplings of N*/ Δ , electromagnetic baryon transitions

Unique opportunity at SIS18 that should not be missed !

HADES Collaboration, Feb 22nd 20018

Thank you

20/02/2024 EMMI workshop B. Ramstein

BACK-UP SLIDES

Models for $\pi^-p \rightarrow ne^+e^-$

 $R_{QED} = (d\sigma/dM)/(d\sigma/dM)_{QED}$

Covariant form factor model

(quark core+ meson cloud) G. Ramalho and M. T. Pena, Phys. Rev. D95, 014003 (2017) Phys. Rev. D101, 114008 (2020) n-N1520 and n-N1535 transitions

• 2 component VDM model with constructive γ - ρ interference (with inputs from π - $p \leftrightarrow n\gamma$ and π - $p \rightarrow \rho n$)

 Lagrangian model: resonant+non-resonant transitions with VDM form factors
 M. Zetenyi et al. Phys.Rev. C 104, 015201 (2021)

Rescattering effects studied with INCL++

INCL++ predictions : quality of our quasi-elastic selection

- Strong effect of rescatterings at small pion momentum.
- "pure" quasi-elastic processes for $p_{\pi} > 600 \text{ MeV/c.}$

Investigation of $pp\pi^-$ for SRCs

1) Select $p\pi^-$ pairs from quasi-elastic process : Graphical cut on P_p^{CM} vs $P_{\pi^-}^{CM}$

2) Suppress rescatterings : P_{π} > 500 MeV/c.

In INCL++, the two protons are emitted sequentially. Yield smaller than in the data, but distributions look similar. \rightarrow no signals of SRCs

Angular distribution as a signal for SRC ?

In the case of SRC: the two nucleons move almost back-to-back in the 12C nucleus

Dubna experiment ¹²C + p @ 48 GeV/c *M. Patsyuk et al.*, *Nat. Phys.* 17, 693 (2021)

Reconstruction of the angle between participant and recoiling nucleons

 \rightarrow peaking at 180° taken as a confirmation of SRC origin

In the π^- + 12C <u>reaction@0.685</u> GeV/c , peaking observed in data, but also in INCL++ model without SRC.